
PSYCHOMETRIKA—VOL. 76, NO. 2, 306–317
APRIL 2011
DOI: 10.1007/S11336-010-9200-6

OPENMX: AN OPEN SOURCE EXTENDED STRUCTURAL EQUATION MODELING
FRAMEWORK

STEVEN BOKER

UNIVERSITY OF VIRGINIA

MICHAEL NEALE AND HERMINE MAES

VIRGINIA COMMONWEALTH UNIVERSITY

MICHAEL WILDE

UNIVERSITY OF CHICAGO, ARGONNE NATIONAL LABS

MICHAEL SPIEGEL, TIMOTHY BRICK, JEFFREY SPIES, AND RYNE ESTABROOK

UNIVERSITY OF VIRGINIA

SARAH KENNY

UNIVERSITY OF CHICAGO, ARGONNE NATIONAL LABS

TIMOTHY BATES

UNIVERSITY OF EDINBURGH

PARAS MEHTA

UNIVERSITY OF HOUSTON

JOHN FOX

MCMASTER UNIVERSITY

OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx
runs within the R statistical programming environment on Windows, Mac OS–X, and Linux computers.
The rationale for developing OpenMx is discussed along with the philosophy behind the user interface.
The OpenMx data structures are introduced—these novel structures define the user interface framework
and provide new opportunities for model specification. Two short example scripts for the specification
and fitting of a confirmatory factor model are next presented. We end with an abbreviated list of modeling
applications available in OpenMx 1.0 and a discussion of directions for future development.

Key words: structural equation modeling, SEM, software, open source, OpenMx

1. Structural Equation Modeling: Context and Motivation

Structural equation modeling has a long history dating back to the development of path
analysis by Sewall Wright (1921). Path analysis is an algorithmic tool for deriving a set of pre-
dicted covariances between variables which may be connected with either regression (asymmet-
ric, directional) or correlation (symmetric, non-directional) paths. The advent of high speed com-
puters and high level programming languages in the 1960s, together with advances in statistical

© 2011 The Psychometric Society
306

STEVEN BOKER ET AL. 307

methodology (Jöreskog, 1967), led to the development of software for fitting models to observed
covariance matrices by maximum likelihood. This procedure is now commonly known as struc-
tural equation modeling (SEM). Several extensions of this methodology have increased its scope:
modeling of means as well as covariances (Sörbom, 1974); specifying certain paths as observed
variables (known as definition variables in Mx) (Neale, 1998; Neale, Boker, Xie, & Maes, 2006);
and fitting finite mixture distributions (Eaves, Neale, & Maes, 1996; Everitt & Hand, 1981;
McLachlan & Peel, 2000).

A search of the PsycInfo database for “latent variable” or “latent class” or “structural
equation model” gives an estimate of the increasing popularity of SEM: 1970s, 23; 1980s,
357; 1990s, 2,794; and 2000–2009, 9,599. These searches underestimate the actual num-
ber of published articles that used this method, as many abstracts do not provide detail
about the statistical methods used. At the same time, the great variety of statistical meth-
ods that are subsumed by SEM, including analysis of variance, multiple regression, discrimi-
nant analysis, canonical and partial correlations, factor analysis, principal components analy-
sis and multilevel analysis (Marcoulides & Schumacker, 1996; McArdle & Hamagami, 1996;
Longford & Muthén, 1992), further demonstrate its broad utility.

The increased popularity of SEM has been accompanied by two changes in the statistical
analysis of research data. First is that the complexity of the models and methods being used has
increased dramatically. In statistical modeling, problems that were previously regarded as impos-
sibly complex have become regarded as tractable. This trend is partly driven by Moore’s Law,
which states that the complexity of computer circuits (i.e., computing power) doubles approx-
imately every 18–24 months (Moore, 1965). Both methodological and substantive researchers
have sought to exploit developments in computer architecture by using statistical methods and
models to improve the quality of their scientific output.

The second change is that as data collection methods have become more automated and data
storage has become inexpensive, datasets have dramatically increased in size. As a result, re-
search projects have become more ambitious, collecting many measurements from large samples
of subjects. SEM, which has made possible a range of complex analyses, has the potential to be
an extremely valuable approach to these new challenges due to (i) greater statistical power (less
variance in study outcomes), and (ii) greater accuracy (less bias in the results).

There is a wide variety of software that allows the estimation of SEM models. Examples
include Amos (Arbuckle, 2009), Calis (PROC CALIS, 2009), EQS (Bentler, 2009), LISREL
(Jöreskog & Sörbom, 2009), Mplus (Muthén & Muthén, 2009), Mx (Neale, Boker, Xie, & Maes,
2006), RAMONA (Browne & Mels, 2009), sem (Fox, 2009), and SEPath (SEPath, 2009). Given
this crowded field of SEM software, it is perhaps surprising that there might be room for a
new SEM package. The present article announces the availability of new SEM software that
is substantially different from that currently available. We believe that OpenMx fills an open
evolutionary niche in the extant SEM software ecology.

2. Why a New SEM Package?

OpenMx is a free, open source, full-featured SEM package that runs inside the R statis-
tical programming environment (Ihaka & Gentleman, 1996). Although the programming team
includes authors of the original Mx software, OpenMx has been rewritten from scratch using
modern languages and programming techniques. Model specification has been redesigned to be
much more flexible and general than that used by traditional SEM software.

2.1. Open Source

OpenMx is open source; thus the source code is available for everyone to view, modify, and
use. We currently have a team of dedicated programmers and a design team determining the

308 PSYCHOMETRIKA

direction of OpenMx. The project itself is organized somewhat like a scientific journal: Code
can be submitted for review by the “editorial board” who read, edit, and test the code. Code
that is accepted for publication as part of the OpenMx package becomes available for the entire
scientific community. We do not place any limits on how readers and users of the code may use
the software and code, but we do expect that code that is part of OpenMx is cited by people who
use it. Authors who contribute code are cited by the project and by others who use their code.

In order to help organize an open source community, the OpenMx project maintains a web
site (http://openmx.psyc.virginia.edu) that hosts binary and source versions of the software and
several forms of tutorials and reference documentation. On the web site, a set of open-access
forums have been established to allow the SEM community a place to discuss SEM models, the-
ory, and methodology. In addition, help on OpenMx is available on the web site from discussion
forums and a community-maintained Wiki. Finally, a set of developer forums is also hosted in
order to allow statistical programmers a place to communicate about new ideas and patches that
may become part of the base OpenMx project.

2.2. Sustainability

OpenMx has been written using modular programming techniques in the C and R languages
with the intent that it will be maintained and extended by members of the research community.
Modular programming design means that the code is written so that each section of code operates
independently and is accessed via a well-defined interface. This means that many programmers
can be working on the code simultaneously as long as each module of code maintains the ex-
pected behavior from its interface. In order to work on part of OpenMx, one does not need to
understand the inner workings of all other modules; it is only necessary to understand and adhere
to the interface for that specific module.

The core programming team is working hard to encourage and help statistical and quan-
titative researchers to add their research projects to the larger OpenMx SEM framework. For
instance, someone who is working on a particular type of estimation, a particular type of model,
or perhaps a new fit statistic can incorporate his or her research into a project that is immediately
available to a large community of users. One does not need to write model specification methods,
input/output methods, data handling methods, and all the other parts required before substantive
researchers can use the novel software. We expect that the user interface, estimation methods,
and reporting functions for OpenMx will evolve quickly due to the influx of new ideas and code
contributed by the large community of SEM users.

2.3. Rethinking Model Specification and Estimation

SEM models are becoming more difficult to specify and estimate as substantive theory and
data grow increasingly complex. Massive data sets including genome-wide association and brain
imaging are at the leading edge of this evolving research landscape. These data sets are many
orders of magnitude larger than those available when most SEM software was originally designed
and programmed. For instance, an fMRI data set might include 40,000 voxels per frame per
person. An SEM model of these data might include hundreds of latent variables and tens of
thousands of free parameters. In such a case, one would need a large parallel computing grid to
estimate the model. OpenMx has been designed from the beginning with parallel computing in
mind, both for use with multicore computers and with very large grids of computers such as the
TeraGrid and Open Science Grid.

2.4. Heterogeneous Computing Environments

OpenMx runs on a variety of operating systems including Microsoft Windows, Mac OS–X,
and most popular variants of Linux. OpenMx scripts that are written within one operating system

http://openmx.psyc.virginia.edu

STEVEN BOKER ET AL. 309

can be used on other operating systems without modification. This platform-independence is
useful in today’s heterogeneous computing environments, where each researcher on a team may
have a different preferred computing platform. In addition, this multi-platform support means
that heterogeneous grids of computers can be used to run OpenMx, a common occurrence in
parallel distributed computing environments.

3. A New Approach to Model Specification

Two methods are currently in use for specifying SEM models in scripts. The first centers
around specifying the matrices that define the covariance and mean structure of the manifest and
latent variables. The second method is based on path analysis and uses a compact specification
for the paths and variables in a path diagram. In the end, both of these methods produce a set of
matrix equations that are used as an objective function (sometimes called a cost function) that is
optimized in order to find parameters such that the objective function is at a minimum. Popular
objective functions include maximum likelihood (which in practice minimizes minus two log
likelihood) and several variants of least squares.

OpenMx implements both matrix-centric and path-centric methods for specifying the de-
sired structure of the model. Thus, one can use either of these two methods or even a combination
of the two. We will provide a short example of these two methods later in the article. In addition
to providing built-in objective functions such as FIML, OpenMx provides methods for the user
to specify their own custom objective functions.

The data structures that are produced when one creates an OpenMx SEM model are a depar-
ture from the structures produced by other SEM software. We will next describe these structures
and how they fit together. While software has improved, SEM modelers continue to think about
their model structure in ways that have changed very little since the 1960s. One may use OpenMx
without changing one’s conception of model building, continuing to use path specifications or
matrix specifications in a serially ordered script. However, the fact that R is interactive, has
powerful vector and matrix operations, and incorporates the flow control of a full programming
language all act to allow one to rethink the way models are specified. The OpenMx data struc-
tures are designed to flexibly accommodate the power of R. The authors hope that these factors
will be sufficient to trigger a paradigm shift in the way SEM is conceived and taught.

This section begins with a description of three of the basic structures in OpenMx: MxModel,
MxMatrix, and MxAlgebra. We describe how MxModels may contain other MxModels in a
tree-like hierarchy, and how references are made within an MxModel hierarchy. We then briefly
discuss how data and objective functions are specified within an MxModel. Finally, we provide
two example specifications of a simple confirmatory factor model.

3.1. MxModels and the Objects They Contain

Data structures in OpenMx are implemented as objects, specifically R S4 objects. The Mx-
Model is the object that contains all of what is necessary in order to specify a structural model.
It is primarily a container for other objects while providing the organization that allows the con-
tained objects to refer to one another (see Figure 1). Each MxModel has three slots for metain-
formation about the model: an internal reference name, a type, and a flag that indicates whether
the model can be estimated independently from other models.

MxModels define a namespace, in other words, a self-contained set of strings that define ei-
ther (1) objects or (2) elements in matrices. Each of these names is unique within the namespace.
Therefore, if a name occurs more than once during the specification of an MxModel, it is taken
to mean that the name is referring to the same thing. This turns out to be very powerful. For

310 PSYCHOMETRIKA

FIGURE 1.
An MxModel is a data object that contains metainformation and lists of other Mx objects.

FIGURE 2.
An MxMatrix is a data object that contains metainformation and five R matrices.

instance, if you name two matrix elements “b” then these two elements are constrained to be
equal.

An MxModel may contain: lists of MxMatrices, MxAlgebras, MxConstraints, no more than
one MxData object, and an objective function. There are also slots in the MxModel that contain
a list of optimization options and a list that contains output from the most recent optimization run.
We note here that MxModels can also contain a list of other MxModels. This allows one to create
a hierarchical tree of MxModels which is subsumed within a root MxModel container. A hier-
archical tree of child and parent MxModels provides a new way of thinking about constructing
SEM models that is surprisingly powerful.

An MxMatrix (see Figure 2) is an object which contains five separate R matrices and five
metainformation slots: a type, the number of rows and columns; the labels for each row and
column (in R this is called dimnames); and the name by which the matrix is known in its
MxModel namespace. The five matrices in the MxMatrix are all of the same order, but of different
R storage types. The values matrix holds the starting (or estimated) values and is of type
double. The labelsmatrix is of type character and holds the name of each element of the
matrix. Matrix elements that have the same name are constrained to be equal to one another. The
free matrix is of type logical and if an element is TRUE, then that element is considered to
be a free parameter during estimation. The lbound and ubound matrices are of type double
and contain lower and upper bounds for the free parameters.

An MxAlgebra is an object that contains its name, a formula in R notation, and a re-
sult matrix of type double. The operands in the formula are named objects in the MxModel

STEVEN BOKER ET AL. 311

namespace that are either an MxMatrix or an MxAlgebra. Matrix operators include most of the
common matrix operations such as addition, subtraction, matrix multiplication, dot product, Kro-
necker product, inverse, transpose, augmentation, exponentiation, log, and many others. A full
list of operators can be found on the OpenMx website Wiki.

An MxConstraint contains two objects, either of which can be an MxMatrix or MxAlgebra,
and a relation between them, which can be one of >, <, or ==. This allows the specification of
nonlinear constraints which should be satisfied at the end of optimization.

3.2. Objective Functions and Data

One of the most flexible parts of OpenMx is the way that the objective functions can be
defined. An objective function for optimization results in a scalar number that is minimized.
Examples of predefined objective functions include maximum likelihood (mxMLObjective) and
full information maximum likelihood (mxFIMLObjective). However, other objective functions
can be specified using the mxAlgebraObjective which allows one to specify a formula in the
same way as an MxAlgebra is specified with the caveat that the result of the formula must be
a 1 × 1 matrix. This allows the possibility of creating objective functions that perform specific
optimizations such as variants of least squares or even various Bayesian optimizations.

The MxData object contains the data used for optimization. The data object may be raw
data, a correlation matrix, a covariance matrix, a covariance matrix and vector of means, or a
sums of squares and crossproducts matrix. Each column in the raw data or covariance matrix
must have a column name. If the data is an R dataframe or covariance matrix calculated from
a dataframe, these column names are automatically supplied, but these column names must be
defined via dimnames for data supplied from other sources. Named columns in MxMatrices that
match the dimnames in the MxData are automatically mapped to the correct column in the data.

3.3. MxModel Trees

One of the novel features of OpenMx is that models can contain other models as shown in
Figure 3. This allows one to think very naturally about how dependency is structured in an SEM
context. For instance, a model hierarchy can be built that expresses dependency in a genetic
SEM twin analysis: a model is built that contains matrices common to all twin pairs and then
two submodels are constructed, one for the monozygotic twin pairs and one for the dizygotic
twin pairs. This approach partitions the problem into submodels that follow the logical group
structure in the data. A Mixture distribution analysis can also be set up as a model tree where the
submodels are the classes of the mixture and the top level model expresses the overall likelihood
calculation for the mixture.

Multiple independent models can be grouped together as submodels into a single run for
problems such as bootstrapping or simulations where the top level model can fit an overall model
on the estimation results returned from the independent models. In a case of independent models,
OpenMx uses the facilities of snow and swift to distribute the job over multiple CPUs. The limit
to how many models can be structured into a hierarchy is the memory limit of your computer.
We have run cases with tens of thousands of submodels.

A model hierarchy structure allows one to express the logic of an analysis in a straight-
forward and simplified manner. This feature of OpenMx is a departure from traditional SEM
specification, and has proven popular among beta testers of OpenMx.

3.4. References Within MxModels and MxModel Trees

The namespace for an MxModel includes all of the non-independent models in a hierarchi-
cal tree. Thus, for instance, parameters can be constrained between two submodels as shown in

312 PSYCHOMETRIKA

FIGURE 3.
MxModels can contain lists of submodels.

FIGURE 4.
Equality constraints can be defined between submodels.

Figure 4. Constraints cannot be made to elements in an independent submodel—one of the con-
ditions that allows independent estimation of branches of a model tree that have been marked as
independent. In Figure 4 four elements from three matrices across two submodels have all been
constrained to be equal by labeling the corresponding elements as “d”.

Free elements of MxMatrices can also be constrained to be equal to the results of MxAlge-
bras by using labels that include the MxAlgebra name and an index into the result matrix of the
MxAlgebra as shown in Figure 5. This allows matrix elements to be constrained to be nonlinear

STEVEN BOKER ET AL. 313

FIGURE 5.
Labels can be used to constrain a matrix element to be equal to a matrix element from an algebraic result.

functions of free parameters for use in, e.g., logistic regression or continuous time differential
equations models.

4. Example Scripts

In order to give an introduction to how OpenMx scripts are written, we present a confirma-
tory two factor model with simple structure as shown in Figure 6. The model will be specified
using two methods.

4.1. Path Analysis Method

First, we will use the path analysis method to specify the model. In this approach, we first
define the variables and then specify the regression, variance, and covariance paths. While this
method is verbose, it is designed to expose all of the parts of the model. Hiding functionality be-
hind defaults allows a script to be shorter to type, but it can mean that it is difficult to understand
exactly what the model does (the “Black Box” problem). By making all parts of the model spec-
ification explicit, we expose all of the model to inspection. We have found that this philosophy
results in scripts that are easier for students to learn and others to understand.

load the OpenMx package into R
library(OpenMx)
read the data into an R dataframe
factorData <- read.csv("demoTwoFactor.csv")
define which indicators load on each factor
indicatorsF1 <- c("x1", "x2", "x3", "x4", "x5")
indicatorsF2 <- c("y1", "y2", "y3", "y4", "y5")
create a vector of all of the manifest variables
manifests <- c(indicatorsF1, indicatorsF2)
define which indicator is to be used to scale each factor
scaleF1 <- c("x1")
scaleF2 <- c("y1")
define the names of the factors
latents <- c("F1", "F2")
define the MxModel and store it into "factorModel"
factorModel <- mxModel("Simple Structure Two Factor",
type="RAM",
manifestVars = manifests,

314 PSYCHOMETRIKA

FIGURE 6.
A simple confirmatory factor analysis model as a RAM-style path diagram.

latentVars = latents,
specify the free factor loadings
mxPath(from="F1", to=indicatorsF1, free=TRUE, values=.2),
mxPath(from="F2", to=indicatorsF2, free=TRUE, values=.2),
scale the two latent variables
mxPath(from="F1", to=scaleF1, free=FALSE, values=1),
mxPath(from="F2", to=scaleF2, free=FALSE, values=1),
specify the unique variances
mxPath(from=manifests, arrows=2, free=TRUE, values=.8),
specify the factor variances
mxPath(from=latents, arrows=2, free=TRUE, values=.8),
specify the factor covariance
mxPath(from="F1", to="F2", arrows=2, free=TRUE, values=.3),
specify the mean structure
mxPath(from="one", to=c(manifests, latents), arrows=1, free=FALSE, values=0),
attach the data to the model
mxData(factorData, type="raw")

)
run the factor model
factorModelOut <- mxRun(factorModel)
print a summary of the results
summary(factorModelOut)

Note that we find it convenient to first set up vectors of character strings that define which
indicators are used with which factors and which indicators are used to scale the factors by fixing
their values to 1.0. This allows us to use shorthand to create many loading paths at once in the
mxPath statements—whenever there is a vector of “from variables” or “to variables”, the mxPath
function creates all of the connections at once.

4.2. Matrix Method

While the path analysis method may be preferred for some models, it is often either easier or
necessary to use matrices to specify a model. Many of the advanced models available in OpenMx
have no equivalent path diagram and so their covariance algebra must be specified via matrices.
In addition, matrix specification is frequently more compact than specifying all of the paths.

We will respecify the model in Figure 6 as a product of matrices. This model is of factor
analytic form and so the expected covariance matrix of the indicators, R, can be written as

R = ALA′ + U, (1)

STEVEN BOKER ET AL. 315

where A is the matrix of factor loadings, L is the factor intercorrelation matrix, and U is the
diagonal matrix of unique factor variances. This model can be written in OpenMx using the
following script.

load the OpenMx package into R
library(OpenMx)
read the data into an R dataframe
factorData <- read.csv("demoTwoFactor.csv")
read the names of the indicator variables from the dataframe
indicators <- names(factorData)
define the MxModel and store it into "factorModel"
factorModel <- mxModel("One Factor",
specify the loading matrix including its starting values and
which elements are free
mxMatrix("Full", nrow=10, ncol=2,

values=c(1,rep(0.2,4),rep(0,10),1,rep(0.2,4)),
free=c(FALSE,rep(TRUE,4),rep(FALSE,10),FALSE,rep(TRUE,4)),
name="A"),

specify the factor intercorrelation matrix
mxMatrix("Symm", nrow=2, ncol=2, values=.8, free=T, name="L"),
specify the matrix of unique factor variances
mxMatrix("Diag", nrow=10, ncol=10, values=1, free=T, name="U"),
specify the algebra that results in the model expectations
mxAlgebra(A %*% L %*% t(A) + U,

dimnames = list(indicators, indicators),
name="R"

),
specify a model for the means fixed at zero
mxMatrix("Full", nrow=1, ncol=10,

values=0, free=FALSE,
dimnames=list(NULL, indicators),
name="M"

),
choose the full information maximum likelihood objective function
mxFIMLObjective(covariance="R", means="M"),
attach the data to the model
mxData(factorData, type="raw")

)
run the factor model
factorModelOut <- mxRun(factorModel)
print a summary of the results
summary(factorModelOut)

The trickiest part of this version of the script is the way that the loading matrix, A, is spec-
ified. Note that R stores values into matrices column-wise unless byrow=TRUE is selected. So,
the matrix A ends up as a 10 × 2 matrix with starting values

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0
0.2 0
0.2 0
0.2 0
0.2 0
0 1.0
0 0.2
0 0.2
0 0.2
0 0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

If you look carefully in the script above at the values= line in the specification of the matrix A,
you can see how the values from vector are stored into the A matrix. A similar method is used

316 PSYCHOMETRIKA

to specify which loadings are fixed and which are to be estimated in the matrix A. All elements
with starting values of 0.2 end up designated as free=TRUE whereas all others are designated
as free=FALSE.

4.3. Other Specification Styles

Since R is a full programming language and the OpenMx specification structure is flexible,
there are many styles of model specification that could be used to create identical statistical
models. We expect several styles will emerge as users become acquainted with the possibilities.
One style that has become common among the core programming team members is to specify
each of the MxMatrices separately, assigning them to R variables early in a script. Later, these
predefined matrices can be combined into different model configurations somewhat like using
LEGO blocks. This method results in scripts that bear little resemblance to traditional SEM
scripts, but these LEGO-style scripts can be easier to write, debug, and maintain.

5. Summary

The OpenMx project is full-featured, open source, SEM software that runs on most available
operating systems. The software runs in the R statistical computing environment. The user inter-
face is designed to be: (i) flexible in that there are many ways in which models can be defined;
(ii) powerful in that models can be specified without relying on hidden mechanisms; and (iii) ex-
tensible in that there are facilities to add new objective functions and optimization methods.

A wide variety of SEM models can be fit with OpenMx. A few of the more popular models
that are in current use include: confirmatory factor analysis, multivariate autoregression with
cross-lags, latent growth curves, latent mediation, multivariate mixed effects, multigroup models
with constraints, behavioral genetic and genetic epidemiological models, multivariate ordinal
models with threshold estimation, factor mixture models, latent differential equations, latent class
models. All of these models can be (and sometimes must be) run using full information maximum
likelihood estimation.

When independent submodels are specified, OpenMx allows for automatic use of multiple
CPUs in modern multicore systems. When a computer cluster or distributed grid of computers
is available, OpenMx can take advantage of this service to run its independent submodels on
multiple computers simultaneously.

The current article only briefly covers the many features and facilities of OpenMx. To learn
more, obtain a free download of the software, and participate in the OpenSEM forums please go
to http://openmx.psyc.virginia.edu.

Acknowledgements

Funding for this work was provided by NIH Grant 1R21DA024304–01. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Institutes of Health. The core development
team would also like to thank a large group of beta testers including Dorothy Bishop, Greg Carey,
Pascal Deboeck, Emilio Ferrer, Christopher Hertzog, Kevin Grimm, Ken Kelley, Matthew Keller,
Michael Kubovy, Jean-Philippe Laurenceau, Todd Little, Diane Lickenbrock, Gitta Lubke, John
J. McArdle, Sam McQuillin, Sarah Medland, John Nesselroade, Joseph Rausch, William Rev-
elle, Michael Scharkow, James Steiger, Melissa Sturge-Apple, Stephen Tueller, Jens Vogelge-
sang, Theodore Walls, Keith Widaman, Timothy York. Correspondence may be addressed to
Steven M. Boker, Department of Psychology, The University of Virginia, PO Box 400400,

http://openmx.psyc.virginia.edu

STEVEN BOKER ET AL. 317

Charlottesville, VA 22903, USA; email sent to boker@virginia.edu; or browsers pointed to
http://openmx.psyc.virginia.edu.

References

Arbuckle, J.L. (2009). Amos user’s guide. Chicago: SPSS.
Bentler, P.M. (2009). EQS structural equations program manual. Encino: Multivariate Software.
Browne, M.W., & Mels, G. (2009). RAMONA: SYSTAT for Windows (Computer software manual). Chicago, SYSTAT.
Eaves, L.J., Neale, M.C., & Maes, H.H. (1996). Multivariate multipoint linkage analysis of quantitative trait loci. Behav-

ior Genetics, 26, 519–526.
Everitt, B.S., & Hand, D.J. (1981). Finite mixture distributions. London: Chapman and Hall.
Fox, J. (2009). sem: structural equation models (Computer software manual). Available from http://CRAN.R-project.org/

package=sem (R package version 0.9–19).
Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical

Statistics, 5(3), 299–314.
Jöreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443–482.
Jöreskog, K.G., & Sörbom, D. (2009). LISREL. Chicago: Scientific Software International.
Longford, N.T., & Muthén, B. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581–597.
Marcoulides, G., & Schumacker, E. (Eds.) (1996). Advanced structural equation modeling. Hillsdale: Erlbaum.
McArdle, J.J., & Hamagami, F. (1996). Multilevel models from a multiple group structural equation perspective. In:

G. Marcoulides, & E. Schumacker (Eds.), Advanced structural equation modeling (pp. 89–124). Hillsdale: Erlbaum.
McLachlan, G.J., & Peel, D. (2000). Finite mixture models. New York: Wiley.
Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8).
Muthén, L.K., & Muthén, B.O. (2009). Mplus user’s guide. Los Angeles: Muthén & Muthén.
Neale, M.C. (1998). Modeling interaction and nonlinear effects with mx: a general approach. In: G. Marcoulides &

R. Schumacker (Eds.), Interaction and non-linear effects in structural equation modeling (pp. 43–61). Hillsdale:
Erlbaum.

Neale, M.C., Boker, S.M., Xie, G., & Maes, H. (2006). Mx: statistical modeling (7th ed.) Richmond: Department of
Psychiatry, Virginia Commonwealth University.

PROC CALIS (Computer software manual). Cary, SAS Institute, Inc.
SEPath (Computer software manual) (2009). Tulsa, StatSoft, Inc.
Sörbom, D. (1974). A general method for studying differences in factor means and factor structures between groups.

British Journal of Mathematical & Statistical Psychology, 27, 229–239.
Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.

Manuscript Received: 12 MAY 2010
Final Version Received: 12 MAY 2010
Published Online Date: 6 JAN 2011

http://openmx.psyc.virginia.edu
http://CRAN.R-project.org/package=sem
http://CRAN.R-project.org/package=sem

	OpenMx: An Open Source Extended Structural Equation Modeling Framework
	Abstract
	Structural Equation Modeling: Context and Motivation
	Why a New SEM Package?
	Open Source
	Sustainability
	Rethinking Model Specification and Estimation
	Heterogeneous Computing Environments

	A New Approach to Model Specification
	MxModels and the Objects They Contain
	Objective Functions and Data
	MxModel Trees
	References Within MxModels and MxModel Trees

	Example Scripts
	Path Analysis Method
	Matrix Method
	Other Specification Styles

	Summary
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

