
Statistical power of the classical twin design was
revisited. The approximate sampling variances 

of a least-squares estimate of the heritability in a 
univariate analysis and estimate of the genetic corre-
lation coefficient in a bivariate analysis were derived
analytically for the ACE model. Statistical power to
detect additive genetic variation under the ACE
model was derived analytically for least-squares,
goodness-of-fit and maximum likelihood-based test
statistics. The noncentrality parameter for the likeli-
hood ratio test statistic is shown to be a simple
function of the MZ and DZ intraclass correlation coef-
ficients and the proportion of MZ and DZ twin pairs
in the sample. All theoretical results were validated
using simulation. The derived expressions can be
used to calculate power of the classical twin design
in a simple and rapid manner.

Power calculations for twin designs are useful when
designing experiments to estimate variance compo-
nents and to test hypotheses regarding the nature 
of phenotypic similarity of twins. Power calculations
can be performed using asymptotic theory (Lynch 
& Walsh, 1998; Martin et al., 1978) or computer
simulation studies based upon, for example, likeli-
hood theory (Neale et al., 1994; Neale & Maes,
2004; Posthuma & Boomsma, 2000). Martin et al.
(1978) provided a comprehensive theoretical analysis
of the power of the classical twin design using
weighted least-squares to estimate variance compo-
nents and a goodness-of-fit test to reject ‘false’
models. Nowadays, maximum likelihood is com-
monly used to estimate variance component from
twins or twin families using versatile computer 
programs such as Mx (Neale et al., 2002).
Surprisingly, most of the literature on the estimation
of parameters from twin designs is of the ‘black-box’
category, in that no explicit equations are given for
the sampling variances of the parameter estimates and
for statistical power. In this study we derive simple
equations to calculate the power of twin designs
under the common ACE model, constrasting least-
squares with maximum likelihood and goodness-of-fit
tests. Equations are presented for the sampling vari-
ance of the estimate of the heritability, the proportion
of variance due to common environmental effects,
and the estimate of the genetic correlation coefficient
in a bivariate analysis. The noncentrality parameter

for a maximum likelihood-ratio test for genetic vari-
ance is given as a simple function of the population 
parameters. All predictions are verified using com-
puter simulation.

Assumptions and Notation
Throughout, we assume the commonly used ACE
model, for which the phenotypic variance is 
partitioned in an additive genetic (A), common 
environmental (C) and residual environmental 
(E) component. The proportions of phenotypic 
variance due to these random effects are h2, c2 and e2,
respectively. Predictions are first made using least
squares (LS), from the properties of mean squares,
which are the underlying sufficient statistics in the
classical twin design. Subsequently, derivations are
derived for (residual) maximum likelihood.
Parameters are scaled so that total phenotypic 
variance is 1.0. The total variance (var(y)) is then 
partitioned as, var(y) = h2+c2+e2 = 1. For a bivariate
analysis, a derivation is given for the sampling 
variance of the estimate of the genetic correlation
coefficient, using least squares. Other parameterisa-
tions and analysis methods (e.g., Jinks & Fulker,
1970) were not investigated because they are not 
used in practice.

Theory
Univariate models

Least squares

Consider the between-pair (B) and within-pair (W)
observed mean squares (MS) in the standard ANOVA
Table for n pairs, where the pairs can be either dizy-
gotic (DZ) or monozygotic (MZ)

df MS E(MS)

between pairs n–1 B 2σb
2 + σw

2

within pair n W σw
2
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pMZ =  (1–tMZ
2) / [(1–tDZ

2) + (1–tMZ
2)] [2]

Except for the trivial case when h2 = 0, this ratio is
smaller than 1/2. Hence, if the cost of phenotyping is
limiting and many twin pairs are available for pheno-
typing, then an optimum design would have more DZ
than MZ twin pairs if the data are analyzed using
least squares. For example, for tMZ = 0.5 and tDZ =
0.25, n/m = 1.25, that is, approximately 56% DZ and
44% MZ pairs. If tDZ = 1/2tMZ (AE model), and the cor-
relation is small, then n/m ≈ 1 + 1/2h4. Unless the
heritability is very large (>> 0.50), this suggests that
the optimum design is close to a 1:1 ratio of DZ and
MZ pairs.

Power and sample size. For large samples, the quantity
λ = (h2/SE(h

^ 2)) is the expected mean test statistic of a
normal test. Its square is approximately equal to the
noncentrality parameter (NCP) of a chi-square test
statistic. The NCP per total number of pairs (N) is,
from Equation [1],

NCPLS/N = (tMZ–tDZ)2 / [(1–tMZ
2)2 /pMZ + 

(1–tDZ
2)2 /(1–pMZ)]

[3]

For a statistical test we assume that under the null
hypothesis of h2 = 0 (λ = 0)

T = h
^ 2/SE(h

^ 2) ~ N(0,1)

Under the alternative hypothesis, T ~ N(λ,1). This
allows a simple prediction of power. If z1–α is the 
one-sided (upper tail) threshold from a standard
normal distribution corresponding to a type-I error
rate of α, and β the type-II error rate, then, for a one-
sided test

Power = 1–β = Prob(x > z1–α–λ)

with x a standard N(0,1) random variable. Alterna-
tively we can express the required power for a given
value of the heritability in terms of the MZ and DZ
sample size

zβ = z1–α–λ, or, λ = z1–β + z1–α

Using the variance of the estimate of the heritability

λ2 = h4 / var(h
^ 2) = (z1–α+ z1–β)

2

For a given proportion of MZ twins in the sample,
the required total number of twins is, from Equation [3]

N = 4(z1–α+z1–β)
2 [(1–tMZ

2)2 /pMZ + (1–tDZ
2)2 /(1–pMZ)]/ h4

For example, if pMZ = 1/3 , α = 0.05, (1–β) = 0.80, h2 =
0.5 and c2 = 0.20, then z1–α = 1.64 z1–β = 0.84 and N =
172 twin pairs, n = 115 DZ and m = 57 MZ pairs.
The optimal design for these parameters (from
Equation [2]) is n = 103 and m = 66, for a total
sample size of 169 twin pairs. 
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The expected mean squares and between- and within-
pair variances for the ACE model, when scaled by the
phenotypic variance, are

E(B) E(W) σb
2 σw

2

MZ 2(h2+c2) + (1–h2–c2) h2+c2 (1–h2–c2)
pairs (1–h2–c2)

DZ 2(1/2h2+c2) + (1–1/2h2–c2) 1/2h2+c2 (1–1/2h2–c2)
pairs (1–1/2h2–c2)

The variance of the observed mean squares (MS) are

var(MS) = 2 E(MS)2/df

with df the degrees of freedom. Hence the variance of
the estimate of the between-pair component is

From the ANOVA the estimate of the intraclass corre-
lations is calculated as

t^ = [(B–W)/2] / [(B–W)/2+W] = (B–W) / (B+W)

Doing this for m MZ pairs and n DZ pairs gives t^MZ

and t^DZ. A first-order approximation of the variance
of these correlations is (see, e.g., Visscher, 1998; and
Lynch & Walsh, 1998 for balanced one-way designs)

var(t^MZ)   ≈ (1–tMZ)2(1+tMZ)2/m = (1–tMZ
2)2 /m

var(t^DZ)   ≈ (1–tDZ)2(1+tDZ)2/n = (1–tDZ
2)2 /n

The estimates of the genetic and common environ-
mental components, and their approximate variances
are

h
^ 2

= 2(t^MZ – t^DZ)

var(h
^ 2) = 4 [var(t^MZ) + var(t^DZ)] = 

4[(1 –tMZ
2)2 /m + (1–tDZ

2)2 /n]
[1]

or, in terms of the causal components,

var(h
^ 2) = 4{ [1 – (h2+c2)2]2/m + [1 – (1/2h2+c2)2]2/n] }

Similarly, the estimate and sampling variance of the
proportion of variance due to common environmental
effects is

c^ 2 = 2t^DZ – t^MZ and 

var(c^ 2) = 4var(t^DZ) + var(t^MZ) = 4(1–tDZ
2)2 /n +

(1–tMZ
2)2 /m

Equation [1] implies that for a given total number (N
= n+m) of twin pairs, the sampling variance of the
estimate of the heritability is minimised when

n/m = (1–tDZ
2) / (1–tMZ

2)

The optimum proportion of MZ pairs (pMZ) is



Maximum likelihood

Given the sufficient statistics (sums of squares within
and between MZ and DZ pairs), there is a close 
relationship between least squares and ML estima-
tion for balanced designs (e.g., Thompson, 1962). In
Appendix A we show the residual maximum likeli-
hood (REML) estimation for ACE and CE models for
a mixture of two one-way designs and give the
expected value of the likelihood-ratio test statistic per
pair from the ACE and CE model

NCPML = ln{(1–tAVE
2) / [(1–tMZ

2)pMZ (1–tDZ
2)(1–pMZ)]} [4]

with tAVE = pMZtMZ + (1–pMZ)tDZ, the weighted average
of the two intraclass correlations. Equation [4] con-
tains all of the information required for a power
calculation using twin pairs under the ACE model.
For pMZ = 1/2, the NCP per pair becomes

NCPML|(pMZ = 1/2) = ln{(1–1/4(tMZ+tDZ)2 /
[(1–tMZ

2)0.5(1–tDZ
2)0.5]}

If in addition we assume the AE model (tMZ = 2tDZ =
h2), then

NCPML|(pMZ = 1/2, tMZ = 2tDZ) = ln{(1–9/4tMZ
2) /

[(1–tMZ
2)0.5(1–4tMZ

2)0.5]}

The required sample size, for a given value of pMZ is

N = (z1–α+z1–β)
2 / NCPML = (z1–α+z1–β)

2 / ln{(1–tAVE
2) /

[(1–tMZ
2)pMZ (1–tDZ

2)(1–pMZ)]}

For the above numerical example of pMZ = 1/3, N =
152 pairs, with 102 DZ and 51 MZ pairs. The
optimal design for these parameters is pMZ = 0.546,
for N = 127 (69 MZ and 58 DZ pairs). For pMZ = 1/2 ,
h2 = 0.1 and c2 = 0.1, N = 9016 pairs for a type-I
error rate of 5% and power of 80%. If the test is two-
sided, then the required sample size is 11,446,

507Twin Research October 2004

Power of the Classical Twin Design Revisited

)())][(()[(

)()(
ˆ

2222222211111111

12121212

DZDZMZMZDZDZMZMZ

DZDZMZMZ

g

WBWBWBWB

WBWB
r

Table 1

Total Number of Pairs Required for a Power of 0.95 to Reject the CE Hypothesis When it is False at a Type-I Error Rate of 0.05 

True model Martin et al. (1978) Maximum likelihood
pMZ1 pMZ

h2 c2 0.5 Optimised2 0.5 Optimised

0.8 0.1 68 42 (0.9) 36 33 (0.63)
0.6 0.3 85 59 (0.7) 48 45 (0.61)
0.4 0.5 123 94 (0.7) 74 72 (0.59)
0.2 0.7 277 248 (0.7) 183 180 (0.56)
0.6 0.1 257 235 (0.7) 170 168 (0.55)
0.4 0.3 466 455 (0.7) 316 314 (0.54)
0.2 0.5 1449 1449 (0.5) 1005 1002 (0.52)
0.4 0.1 940 940 (0.5) 650 649 (0.52)
0.2 0.3 3268 3268 (0.5) 2281 2279 (0.51)
0.2 0.1 5110 5110 (0.5) 3574 3573 (0.51)

Note: 1 Proportion of MZ twins among all pairs.
2 Lowest total number of pairs, with the proportion of MZ pairs in brackets, selected from Table 5 of Martin et al. (1978), where the proportion of MZ twins was varied from 0.1
to 0.9, in steps of 0.2.

Table 2

Asymptotic Behaviour of Test Statistics from Least Squares,
Goodness-of-Fit and Likelihood Analysis

True model Expected test statistic
Least squares Goodness-of-fit Likelihood ratio
(h2 = 0, (CE model) (ACE vs. CE,
one-sided) one-sided)

E 0.5 2 < 0.5a

CE 0.5 2 0.5
ACE (h2 & x x+1 x
c2 small)
ACE < x x > x
(large h2)

Note: a Testing for A when the true model is E produces a zero likelihood-ratio test sta-
tistic for ACE vs. CE with a probability > 0.5

consistent with the results reported by Posthuma and
Boomsma (2000, Figure 2a). 

The above equations for required total sample size
are remarkably simple, and only require the availabil-
ity of standard statistical tables and a calculator.

Bivariate Models (Least-Squares)

For bivariate analysis, the main interest is in parti-
tioning the phenotypic covariance in underlying
components, and in particular the estimation of the
genetic correlation coefficient. For notation, we use
XZ

ij to denote a mean square or mean cross-product.
X is B (between) or W (within), Z is MZ or DZ and i
and j are 1 or 2. For example, BDZ

ij is the between-pair
mean cross-product for DZ twins. The least squares
estimate of the genetic correlation can be written as

[5]



with the numerator equal to twice the difference
between the MZ and DZ between-pair covariance,
and the denominator the square of the product of
twice the difference between the MZ and DZ
between-pair variance for traits 1 and 2. Note that
the genetic correlation coefficient is not defined if the
estimate of the genetic variance for either trait 1 or
trait 2 is negative. This happens when the between-
pair mean square is smaller than the within-pair mean
square, which can occur with a small sample size
and/or when the population value of the heritability is
small. In Appendix B we derive a Taylor series
approximation of the variance of the estimate of the
genetic correlation. 

Equations [B2] to [B4] were used to predict the SE
of the genetic correlation coefficient, and results were
compared to simulations. Mean squares and mean
cross-products were sampled from Wishart distribu-
tions under an ACE model and intraclass correlations
and genetic correlations were estimated using least
squares. When one or both of the estimated heritabili-
ties were negative, their values were used to calculate
the empirical mean and SE of the estimates, but did
not contribute to an empirical estimate of the genetic
correlation. One hundred thousand replicates were
run for all combinations of parameters that were con-
sidered. Prediction of the sampling variance of the
estimates of the heritability was very close to the
observed empirical variance across replicates, with
proportional differences between the observed and
predicted values of approximately 1%. Observed and
predicted sampling variances of genetic correlations
were close, with proportional differences < 10%. 

For the special case of pMZ = 1/2, and rg = 0, the
approximate variance of the estimate of the correla-
tion coefficient is

Making a further assumption that both common envi-
ronmental variance components are zero and that the
heritabilities for the two traits are equal (h2), gives

When dividing the numerator and denominator in
equation [5] by the phenotypic standard deviations of
the two traits, the equation simplifies to

[6]

with r^b

Z with cross-trait correlation for MZ or DZ
pairs. The sampling variance of [6] can again be
approximated, but now under the assumption that
the phenotypic (co)variances are estimated without
error. This approximation was found to be less accu-
rate (results not shown).
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Discussion
Martin et al. (1978) addressed the power of the classi-
cal twin study in detail. Their approach and results
differ from those presented here, and we discuss the
reasons for these differences. Martin et al. addressed
the question ‘what is the required sample size to reject
a model when it is false?’. In that approach, the null
hypothesis is stated but the alternative hypothesis is
not. Martin et al. perform a goodness-of-fit test on
the four mean squares, comparing the difference in
expected mean squares under the true and ‘wrong’
model. For example, if the true model is the ACE
model, Martin et al. calculate the probability (or
sample size) to reject a CE or AE model. In the frame-
work of generalised linear models, their test statistic is
called ‘deviance’. Martin et al. used two degrees of
freedom for the deviance test in the previous example,
because there are four mean squares and two parame-
ters under the ‘wrong’ model. However, a redundant
degree of freedom is fitted if we are willing to make
the assumption that the total phenotypic variances in
DZ and MZ pairs are equal. A test statistic calculated
from the difference in deviance from fitting an ACE
model (1 degree of freedom) and a CE model (2
degrees of freedom) is very similar to a likelihood-
ratio test to test the hypothesis that the additive
genetic component is zero. The method of analysis
used by Martin et al. (1978) was iterative weighted
least-squares (WLS), which was the state of the art at
that time, and is very similar to maximum likelihood.

In this study, we address the question ‘what is the
required sample size to reject the null hypothesis that
h2 = 0 when it is false?’ in the least-squares test, and
‘what is the required sample size to reject an CE
model when compared to the true ACE model?’ in the
maximum-likelihood test. Hence, the null and alter-
native hypothesis are defined specifically, so that the
degrees of freedom of a test for heritability (or genetic
correlation coefficient) is one. In Table 1 we compare
the required sample size to reject a CE model when
the true model is ACE, using Table 5 of Martin et al.
(1978) and the results herein. The required sample
sizes are consistently lower when the more restricted
ML test is used, by about 30%. The sample sizes are
lower for two reasons, (i) because the ML test is for
one degree of freedom and the GOF test for two
degrees of freedom and (ii) because the ML test is
one-sided (A = 0 vs. A > 0) whereas the GOF test is
implicitly two-sided. A summary of the relationships
between the test statistics for the LS, ML and GOF
method under the null and alternative hypothesis is
given in Table 2.

When constrasting the least-squares and maxi-
mum-likelihood results there are some interesting
similarities and differences. If the true population cor-
relations for the twin pairs are low then the two test
statistics are asymptotically equivalent. Otherwise
they are different and the least-squares test is less
powerful. The least-squares analysis only uses the
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contrast between the two intraclass correlations,
which leads to a theoretical optimum design with
more DZ than MZ twins pairs to minimise the SE of
the estimate of their difference. The ML test uses both
the difference in intraclass correlations between MZ
and DZ pairs and the lack of fit under the reduced
(CE) model. For large values of A the lack of fit con-
tributes substantially to the test statistic which is why
the optimum design has more MZ than DZ twins
pairs and why the ML test is more powerful.

Williams (1993) derived asymptotic sampling vari-
ances and covariances (and sampling correlations) for
estimates of variance components in commonly used
models in the classical twin design. These (co)vari-
ances were derived by taking the expected value of
the second differentials of the likelihood function
with respect to the parameters of interest. Williams
(1993) illustrated an application of these calculated
asymptotic (co)variances by deriving the optimum
design, in terms of the number of MZ and DZ pairs,
when the objective is to minimise the asymptotic vari-
ance of A in a simple AE design. Surprisingly, the
results indicated that for a large value of the heritabil-
ity (h2 > 2/3) the optimum design was a mixture of DZ
and MZ, rather than the intuitively most efficient
design of 100% MZ pairs. We have not been able to
replicate Williams’ findings, either in theory (see
Appendix C) or by simulations.

In conclusion, simple equations were derived that
approximate the sampling variances and power for
estimates of genetic parameters in the classical twin
design. The results presented are easily extended to
other models, including CE, AE and ADE models.
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Appendix A: Residual Maximum Likelihood (REML) 
estimation from mean squares

Given the sum of squares (SS) about the mean for DZ and MZ pairs, the log-likelihood
function (L) has the following form

–2L = (m–1)ln[E(BMZ)] + mln[E(WMZ)] + (n–1)ln[E(BDZ)] + nln[E(WDZ)]

+ SSBMZ/E(BMZ) + SSWMZ/E(WMZ) + SSBDZ/E(BDZ) + SSWDZ/E(WDZ) [A1]

(for example, Thompson, 1962). This is the function for the residual (or restricted) likeli-
hood because the degree of freedom in estimating the MZ and DZ means have been taken
into account. For twin analyses, this adjustment is trivial and the residual likelihood and
REML estimates are very similar to the standard likelihood and ML estimates.

For the ACE model, the expected values of the 4 mean squares are functions of 3 parame-
ters, so an iterative procedure has to be used. For the CE model, the REML estimates of the
variance between (subscript bs) and within (subscript ws) strata are

σ^bs

2 = [SSBMZ+SSBDZ] / [m+n–2], and σ^ws

2 = [SSWMZ+SSWDZ] / [m+n] [A2]

The REML estimates of the underlying variance components are, if σ^bs

2 > σ^ws

2 ,

σ^e

2 = σ^ws

2 and σ^c

2
= (σ^bs

2 – σ^ws

2
) / 2

If σ^bs

2 < σ^ws

2 , then the REML estimates are σ^c

2 = 0 and

σ^e

2 = [SSBMZ+SSBDZ+SSWMZ+SSWDZ]/[2(m+n–1]

= [(m+n–2)σ^bs

2 + (m+n) σ^ws

2 ] / [2(m+n–1)]

The expected log-likelihood-ratio test statistic can be approximated by replacing the SS in
[A1] by the expected value under the true (ACE) model, and the expected estimates of the
variance components under either the full model or the reduced model. Asymptotically, the
expected variance components under the CE model are obtained from [A2], by replacing
the SS by their expected values.

Asymptotically (m ≈ m–1 and n ≈ n–1), the log-likelihood function, scaled by the total
number of twin pairs (N) can be written as

–2L/N = pMZln[E(BMZ)] + pMZln[E(WMZ)] + (1–pMZ)ln[E(BDZ)] + (1–pMZ)ln[E(WDZ)]

+ pMZBMZ/E(BMZ) + pMZWMZ/E(WMZ) + 

+ (1–pMZ)BDZ/E(BDZ) + (1–pMZ)WDZ/E(WDZ) [A3]

The NCP per pair of the likelihood-ratio-test (LRT) for the ACE versus the CE model was
derived using [A2] and [A3]

NCP = ln{(1–tAVE
2) / [(1–tMZ

2)pMZ (1–tDZ
2)(1–pMZ)]} [A4]

with tAVE = pMZtMZ + (1–pMZ)tDZ, the weighted average of the two intraclass correlations.
Equation [A4] is simple and shows a strong resemblance to the NCP for QTL mapping
using sibpairs (Wright, 1997). At the limit, for both tMZ and tDZ close to zero, equation [A4]
reduces to pMZ(1 – pMZ)(tMZ –tDZ)2, which is equivalent to the limit of the NCP for least
squares (Eq. [3] in the main text). To derive the optimum value of pMZ, equation [A4] was
differentiated with respect to pMZ. The maximum NCP is achieved when

pMZ = [X–2+Y–2]0.5 + X–1–tDZY–1 [A5]

with X = ln[(1–tMZ
2) / (1–tDZ

2)] and Y = (tMZ–tDZ)

The optimum proportion of MZ twins is always > 0.5. For a wide range of plausible com-
binations of parameters it is between 0.5 and 0.6 (consistent with Martin et al., 1978).
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Appendix B: Approximate sampling variance for the least 
square estimator of the genetic correlation coefficient

From the main text, a least-squares estimator of the estimate of the genetic correlation coef-
ficient is

[B1]

To approximate the variance of [B1], we repeatedly use the following results from standard
multivariate theory (e.g., Anderson, 1958), for mean squares XZ

ij and XZ
kl.

cov(XZ
ij ,XZ

kl ) = [E(XZ
ik)E(XZ

jl) + E(XZ
il)E(XZ

jk)]/df

with df the degrees of freedom. We assume that the number of MZ and DZ pairs is large
enough so that n ≈ n–1 and m ≈ m–1. For example, 

var(BDZ
12 )= [E(BDZ

11 )E(BDZ
22 ) + E(BDZ

12 )2] /n

Covariances among between and within mean squares and cross-products are zero, as are
covariances betweeen mean squares and cross-products from MZ and DZ pairs. Equation
[B1] was approximated by a number of first-order Taylor series (for example, Lynch &
Walsh, 1998)

var(X/Y) ~ var(X)/E(Y)2 + var(Y)E(X)2/E(Y)4 – 2cov(X,Y)E(X)/E(Y)3 [B2]

var(XY) ~ E(X)2var(Y) + E(Y)2var(X) + 2E(X)E(Y)cov(X,Y) [B3]

and

var(X0.5) ~ 1/4var(X)/E(X) [B4]

with X the numerator and Y the denominator. Using first-order Taylor series results in the
following expression for the mean and (co)variances of the X and Y terms:

E(X)   =   rgh1h2

E(Y)   =   h1h2

and
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Appendix C: Asymptotic sampling variances under an AE model

We considered a sample consisting of either all MZ or all DZ pairs. Taking the expectation
of the 2nd differentials of the likelihood function (Appendix A) with respect to A, E and the
combination AE, and inverting the resulting 2 x 2 matrix gives the asymptotic covariance
matrix for the two variance components. When we scale the results by the number of pairs
and by the phenotypic variance, the results become:

Asymptotic variances MZ DZ
var(σ^ 2

A) 1+h4 4+h4

var(σ^ 2

E) 2(1 – h2)2 1/2[(1+1/2h2)2 + 9(1–1/2h2)2]

var(σ^ 2

A) h2 → 0 1 4
var(σ^ 2

E) h2 → 0 2 5

var(σ^ 2

A) h2 → 1 2 5
var(σ^ 2

E) h2 → 1 0 9/4

These results were verified by computer simulation. It is clear that per pair the asymptotic
sampling variance for MZ is always smaller than that for DZ pairs, irrespective of the heri-
tability, as one might expect. A least squares analogy gives the same result because the
variances of the intraclass correlations for MZ and DZ pairs are proportional to (1–h2)2

and (1– 1/2h2)2, respectively, so always lower per MZ pair.
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