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The Cholesky Approach: A Cautionary Note

John C. Loehlin!
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Attention is called to a common misinterpretation of a bivariate Cholesky analysis as if
it were a common and specific factor analysis. It is suggested that an initial Cholesky
behavior genetic analysis should often be transformed into a different form for interpre-
tation. Formulas are provided for four transformations in the bivariate case.
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Cholesky factoring, or triangular decomposi-
tion, is becoming a popular approach to multivar-
iate behavior genetic problems (see, e.g., Neale and
Cardon, 1992). In such a procedure, illustrated in
Fig. 1 for three variables, the first latent variable,
F|, has effects on all the variables ¥, to V;; the
second, F),, is uncorrelated with the first and has
effects on the remaining variables V, and ¥;; and
the last, F;, is specific to V5. One use of the Cho-
lesky procedure is in temporal contexts. For ex-
ample, ¥, to V; might represent measurements of
some variable at three successive times. In this
case, F, would represent causes present at time 1
which affect the observed variable at time 1 and on
subsequent occasions; F, would represent addi-
tional causes which arise by time 2 and whose ef-
fects are added to those of F, from time 2 on; and,
finally, F, represents new causes at time 3 which
affect only the last measurement, V.

However, a Cholesky decomposition can also
represent a multivariate analysis of simultaneously
measured variables considered in some rationally
defined order of priority. In this case, F, is assigned
the first priority, to explain ¥, and as much of V,
and V; as it can. Then F,, given second priority,
explains what is left of ¥, and as much as it can
of V. Finally, F, takes care of what is left of V.
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Fig. 1. Example of Cholesky decomposition. |, F,, and F;,
Cholesky factors; V), V,, and ¥, variables.

It should be emphasized that the explanation ar-
rived at depends on the ordering—if we had con-
sidered the latent variables in the reverse order, F;
would be a factor with paths to all the variables,
and F, a residual. Only in the case of uncorrelated
variables is the order of selection immaterial.

Any of the six possible orderings of the three
latent variables in Fig. 1 explains the variance—co-
variance matrix among the variables equally well.
Any solution can be transformed into any other at
will. The justification of one over another as an
explanation of the data depends entirely on the
logic underlying the sequence in which the varia-
bles are considered. In the temporal case, there is
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a compelling underlying ordering, that of time se-
quence. In the general multivariate case, the order-
ing must be rationally justified. In many situations,
rather than undertake such a justification, a user
might prefer to transform an initial Cholesky so-
lution into some alternative form that does not
make this demand, along lines to be discussed
shortly.

In typical behavior-genetic applications, each
of the latent variables in a Cholesky analysis is de-
composed into genetic and environmental compo-
nents by obtaining data on the observed variables
in an appropriate sample of twins, adoptees, or
other relatives. An example of such a decomposi-
tion is given in Fig. 2, based on the familiar 4, C,
and E model of additive effects, common environ-
mental effects, and unique environment plus error
(e.g., Heath er al., 1989). Other variations, such as
solving for D instead of C, dividing the C or E
term into more than one component, and so on,
would follow the same principles.

A common misinterpretation of Cholesky
analyses in the bivariate case is illustrated by Fig.
3. (For simplicity, all latent and observed variables
are assumed to be in standard-score form.) The
analysis on the left, labeled (i), is a Cholesky anal-
ysis, with variable 4 taken as primary. F, is the
sole cause of variable 4 and a partial cause of B.
F, is a residual, representing the variance in B in-
dependent of F, and 4. The analysis on the right,
(i1), is a common and specific factor analysis, with
F a factor affecting both 4 and B, and F, and Fj
factors specific to 4 and B, respectively. The error
is to speak of analysis (i) as though it were analysis
(i). An example would be to take a two-occasion
measurement analyzed by a Cholesky model and
describe the genetic component of F, as represent-
ing common genetic influences or genetic influ-
ences affecting the phenotype at both ages (e.g.,
Plomin et al., 1994, p. 209). This latent variable
does include such influences, so the statement is
not entirely incorrect, but it also includes genetic
influences that are notr common to both ages but
specific to time 1. Another example (Duffy et al.,
1994) involves two variables measured concur-
rently. Two indices of Type A personality were an-
alyzed via a bivariate Cholesky analysis. The
variance corresponding to 4 and E components of
F, is described as ‘‘common additive genetic’’ and
‘“‘common unshared environment’’-~—despite the
likely presence of a specific component in the for-

Fig. 2. Cholesky factors of Fig. 1 decomposed into additive
genetic (4), common environmental (C), and unshared envi-
ronmental (E) components.

(i (ii)

rAB = .64 rAB =.64

Fig. 3. Bivariate Cholesky model (i) compared to common and
specific factors model (ii). 4 and B, observed variables. F, and
F,, Cholesky factors. F,, common factor; F, and Fy, specific
factors.

mer, and the almost certain presence of one in the
latter. In still other cases of Cholesky analyses, al-
though the description of the analysis is accurate,
a full justification of the ordering of the variables
is skimpy or absent (e.g., Truett et al., 1992).

In cases such as the above, the straightforward
separation of influences into those that are shared
and those that are specific would require a model

‘of type (ii) rather than that of type (i). Type (ii)

models are not generally solvable in the bivariate
case, unless additional restrictions are imposed. On
possibility is to require the paths from F to 4 and
B to be equal. An example is provided by Schmitz
et al. (1994). A model of type (ii) was fit to data
on early childhood Internalizing and Externalizing
behaviors by equating the paths to the two variables
from the common 4, C, and E factors. (Note that
such a procedure normally makes sense only if the
two variables are measured on comparable scales
or are standardized.) With three or more variables,
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Fig. 4. Five alternative bivariate behavior genetic models: (i) Cholesky, (if) common and specific factors, (iii) correlated factors,
(iv) simplex, and (v) opposite Cholesky. In squares, 4 and B observed variables. In circles, 4, C, and E, additive genetic, common
environmental, and unshared environmental latent variables. Correlations: 7,, rc, and r;, additive genetic, common environmental,
and unshared environmental correlations between corresponding components of 4 and B. Paths: A, ca., €., A, Cs, and eg, additive
genetic, common environmental, and unshared environmental paths corresponding to univariate analyses of 4 and B; x, y, z, u, v,
w, o, p, and ¢, residuals; b,, b., and b, paths between additive genetic, common, environmental, and unshared environmental
latent variables at times 4 and B. Remaining path labels arbitrary, for use in Table I equations.

model (ii) becomes the standard Spearman model
of a general plus specific factors and, as such, is
solvable except in special cases. Some recent be-
havior-genetic examples include Baker et al
(1991), Buhrich et al. (1991), and Petrill and
Thompson (1993).

It would be easy to assume that at least the
residuals for the second variable in type (i) and
type (ii) models are the same, but they are not.
Figure 3 contains numerical values derived from an
assumed observed correlation of 0.64 between A

and B. Note that the specific contribution to B dif-
fers depending on which model is being consid-
ered. If, as in (i), a common factor equally
correlated with 4 and B is assumed, 64% of B’s
variance is explained by it, and 36% is residual.
But if model (1) is assumed, only 41% of B’s var-
iance is explained by F, and 59% is residual. Thus
even an analysis of just the second variable into a
part shared with the first and a part that is specific
(cf. Duffy et al., 1994, p. 473) can be misleading,
if based on a Cholesky analysis. As always in latent
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Table I. Transforming Bivariate Cholesky (i) to Other Models in Fig. 4
(All Latent and Observed Variables Assumed Standardized)

Model (ii), Model (iii),
common and specific correlated factors Model (iv), simplex Model (v), opposite Cholesky
1 = vk, By = ViT T xg? hy hy
m = Vjc, cy = Vj2 + yg® Cy same as (iii) Cy same as (iii)
n = Vke, ey = Vki+ z? ey ey
u, = Vh2 - P ry = ilhg b, = ilhg r = ih,/hy
ve = Vel — m re = jlcg be = jlcg s = jealcg
wy, = Ve, — n? re = kleg by = kleg t = kenley
Uy = 12+x33—12 hA hA xAz\/hAz_rZ
v = V2 y—m Ca same as (i) Ca same as (i) ya = Vegt = s?
wy = VE2+ z2 — 2 R N z, = Vet — 1?
o=Vl — b2
p= V1= bc?
q= \/l — b

variable modeling, care must be taken that the lan-
guage used in the interpretation corresponds to the
analysis that was actually carried out.

One possible way to proceed in many cases is
to obtain an initial Cholesky solution and transform
it into the desired form for interpretation. Alterna-
tively, one could fit the desired solution directly,
but the Cholesky is easy to program and solve, and
provides a reasonable starting point if one wants to
look at several alternatives. [Some mathematical
virtues of the Cholesky solution are discussed by
Neale and Cardon (1992).]

Figure 4 represents five solutions for the two-
variable case. Models (i) and (ii) are the 4,C, E ver-
sions of the diagrams in Fig. 3—the Cholesky and
a common and specific factor model. Model (iii) is
what Neale and Cardon (1992, p. 270) call the
‘“correlated factors’’ model. In this, each variable
is separately decomposed into its genetic and en-
vironmental components, and the correlations of
these across variables are estimated. Thus, for ex-
ample, variables 4 and B might each be highly her-
itable but be influenced by different genes (r, =
0). At the same time, it might be that the few en-
vironmental events that do affect 4 and B tend to
influence both—whether these events are shared by
family members or unique to an individual (7. and
rg large). Model (iv) is a simplex (e.g., Boomsma
and Molenaar, 1987), in which causes present at

time A partially persist until time B (the regressions
b,, etc.), at which time new causes may enter (the
residuals). Finally, model (v) is a second Cholesky
analysis taking trait B as primary-—one might
sometimes want to consider how different the ef-
fects are of making the two extreme assumptions
about the causal priority of 4 and B.

Table I gives simple formulas for transforming
the bivariate Cholesky solution in (i) into any of
the other four. Those for the correlated factors so-
lution (iii) are given in a slightly different form by
Neale and Cardon (1992, p. 272). It should be em-
phasized that these are all alternative ways of look-
ing at the same facts. All produce exactly the same
implied variance—covariance matrix and, hence, the
identical overall goodness of fit. However, they
represent different causal models of what is going
on, and the differences in the values of their paths
reflects this fact.

Unless a strict logical priority holds between
variable 4 and variable B, models (ii) and (iii) are
likely to be the most readily interpretable. Model
(i) should remain useful for dealing with a single
variable measured on two occasions, although (iv),
(ii), and (iii) can also be employed in this context—
the last as reflecting genetic and environmental cor-
relations over time (e.g., Plomin and DeFries,
1981). It should be noted that a given transforma-
tion may not always be possible. The application
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of a formula can sometimes lead to impossible re-
sults, such as a negative square root or a negative
residual variance. This simply means that a model
of the desired form will not do the job. However,
a variant of the solution constrained to avoid the
undesirable feature may still be acceptable. This is
probably best achieved by fitting the desired variant
directly, with the necessary constraints imposed. It
should also be noted that simple transformational
formulas of the present kind do not necessarily gen-
eralize easily to larger numbers of variables, al-
though the interpretational issues apply to such
cases as well.

In summary, the approach to multivariate be-
havior-genetic analysis via Cholesky decomposi-
tion can be a useful first step, but one that should
be interpreted with care and, in many cases, not
left as a final solution. One can make an analogy
to the use of principal components in factor anal-
ysis: principal components are computationally
convenient and have many attractive mathematical
properties, but they are usually not interpreted
without further transformation. In fact, it is of some
interest that the Cholesky procedure was itself at
one time in use in factor analysis as a method of
initial factoring, under the rubric of the diagonal
method (Harman, 1976, p. 101). The further de-
velopment and use of rotational or other transfor-
mational procedures for following up initial solu-
tions in behavior genetic analysis would seem to
be a worthwhile goal, as pointed out some years
ago by Crawford and DeFries (1978).
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