Performing linkage analysis using MERLIN

David Duffy

Queensland Institute of Medical Research Brisbane, Australia

Overview

- MERLIN and associated programs
- Error checking
- Parametric linkage analysis
- Nonparametric linkage analysis
- Variance components linkage analysis
- Calculating IBD for other programs
- Combination of SNPs in linkage disequilibrium

Goncalo Abecasis's excellent program. 506 journal citations since 2002.

```
[davidD@bioinfo ~]$ merlin
MERLIN 1.0.1 - (c) 2000-2005 Goncalo Abecasis

References for this version of Merlin:

   Abecasis et al (2002) Nat Gen 30:97-101 [original citation]
   Fingerlin et al (2004) AJHG 74:432-43 [case selection for association studies]
   Abecasis and Wigginton (2005) AJHG 77:754-67 [ld modeling,
```

parametric analyses]

Genetic linkage analysis: MERLIN

- For linkage analysis of binary or quantitative traits and many markers
- Small to moderately large families

Performs:

- parametric and non-parametric linkage analysis
- variance components linkage analysis of quantitative traits
- regression-based analysis of quantitative traits: MERLIN-REGRESS
- multimarker-based ibd and kinship estimation
- haplotyping
- error detection
- simulation of marker data under null hypothesis of no linkage

Linkage disequilibrium between markers is allowed in models

Limitations

- Uses the Lander-Green approach to multipoint linkage, so not suitable for large pedigrees (>30 "bits")
- Maximizer for variance components analysis a little slow if multiple fixed effects included, and may sometimes get stuck

All the MERLIN Commands

```
[davidD@bioinfo ~]$ merlin
The following parameters are in effect:
                    Data File :
                                     merlin.dat (-dname)
                Pedigree File : merlin.ped (-pname)
           Missing Value Code:
                                       -99.999 (-xname)
                     Map File : merlin.map (-mname)
           Allele Frequencies : ALL INDIVIDUALS (-f[a|e|f|m|file])
                  Random Seed:
                                         123456 (-r9999)
Data Analysis Options
          General: -error, -information, -likelihood, -model
[param.tbl]
        IBD States: -ibd, -kinship, -matrices, -extended, -select
      NPL Linkage: -npl, -pairs, -qtl, -deviates, -exp
       VC Linkage: -vc, -useCovariates, -ascertainment
      Haplotyping: -best, -sample, -all, -founders, -horizontal
    Recombination: -zero, -one, -two, -three, -singlepoint
        Positions: -steps, -maxStep, -minStep, -grid, -start,
-stop
   Marker Clusters: -clusters[], -distance, -rsq, -cfreq
           Limits: -bits [24], -megabytes, -minutes
      Performance: -trim, -noCoupleBits, -swap, -cache []
           Output: -quiet, -markerNames, -frequencies, -perFamily,
-pdf,
                    -prefix [merlin]
        Simulation: -simulate, -reruns, -save
```

The MERLIN pedigree file ".ped"

There are three essential files:

The pedigree file format is consistent with the GAS (Sib-pair) or LINKAGE formats:

01927	0192703	х	х	m	0	х	x	1936.3404	1/2	1/1	1/1		
01927	0192704	x	x	£	0	x	x	1938.9885	1/2	1/1	1/1		
01927	0192701	0192703	0192704	m	MZ	2.3300	4.0943	1968.0000	x/x	x/x	x/x		
01927	0192702	0192703	0192704	£	MZ	2.1700	5.3293	1968.0000	1/2	1/1	1/1		
01927	0192750	0192703	0192704	f	0	x	3.8067	1966.0000	1/2	1/1	1/1		
01940	0194003	0	0	1	0	-	-	1918.7665	0	0 0	0	0	0
01940	0194004	0	0	2	0	-	-	1921.4147	1	1 1	1	1	2
01940	0194005	0	0	1	0	-	3.4012	1946.3317	1	1 2	1	1	1
01940	0194001	0194003	0194004	2	0	1.8100	4.2806	1949.0000	1	1 1	1	1	2
01940	0194002	0194003	0194004	2	0	2.7600	5.0599	1949.0000	1	1 1	1	1	1
01940	0194008	0194005	0194001	1	0	-	3.2189	1978.0000	1	1 1	1	1	2
01940	0194009	0194005	0194001	2	0	-	4.4998	1980.0000	1	1 2	1	1	1

The first five fields are pedigree_ID, individual_ID, father_ID, mother_ID, sex.

A character string is treated as missing (hence the use of "x" or "-" here). Therefore alleles **must** be numeric. A "0" for a marker or "-99.999" are also missing data tokens.

The slash between alleles at a genotype are optional.

The MZ twin indicator is "MZ" in that column.

The MERLIN locus file ".dat"

Z mztwin

T aat

T lige2

C yob

M rs1303

M E366K

M rs17580

M rs6647

S2 rs2753934

M rs1980618

The first column defines the variable type: "S" and "S2" skip one or two columns of data, "A" is a binary trait (taking values "[12yn]").

The second column gives the variable name

The MERLIN map file ".map"

14	rs1303	93.915
14	E366K	93.915
14	rs17580	93.917
14	rs6647	93.917
14	rs709932	93.919
14	rs17090730	93.920

The columns are chromosome, marker_name, map_position (in cM).

A typical call to MERLIN

```
> merlin -d chr1.dat -m chr1.map -p chr1.ped -grid 10 -vc
-pdf
...
Family: 42258 - Founders: 2 - Descendants: 2 - Bits: 2
   Skipping Marker D11S2008_S [BAD INHERITANCE]
   Skipping Marker ATA27C11_M [BAD INHERITANCE]

Family: 99008 - Founders: 2 - Descendants: 2 - Bits: 2
   Skipping Marker D11S1301 S [BAD INHERITANCE]
```

A typical call to MERLIN

Phenotype:	ige1 [VC]	(773 fami	lies, h2	= 48.46	%)	
=======			======	======	======	
	Position	Н2	ChiSq	LOD	pvalue	
	4.939	37.76%	5.91	1.28	0.008	
	14.939	31.25%	3.83	0.83	0.03	
	24.939	10.59%	0.52	0.11	0.2	
	34.939	0.00%	0.00	0.00	0.5	
	44.939	0.00%	0.00	0.00	0.5	
	54.939	0.00%	0.00	0.00	0.5	
	64.939	1.51%	0.03	0.01	0.4	
	74.939	3.38%	0.10	0.02	0.4	
	84.939	0.00%	0.00	0.00	0.5	

Columns are:

- map position where lod score evaluated
- heritability due to QTL at that position (AQE model)
- Likelihood Ratio Test Statistic testing H2=0

- LRTS/ $(2 \log(10))$
- One-sided P-value (as negative heritability not legal, H₀ on bound)

Error checking (unlikely double recombinants)

Two or more close recombination events on the same chromosome are uncommon, due to the chance distribution of chiasmata, and because of interference. Broman and Weber [2000] suggest the probability of a double recombinant within a 20 cM interval in humans is only 2 in 1000. It is more likely that there is a genotyping error in one of the markers used to infer the location of the recombination event.

```
> merlin -d chr1.dat -m chr1.map -p chr1.ped -error
```

```
Family: 83520 - Founders: 2 - Descendants: 2 - Bits: 2
  D15S205 genotype for individual 8352001 is unlikely
[2.016e-02]
  D15S205 genotype for individual 8352002 is unlikely
[2.016e-02]

Family: 85060 - Founders: 2 - Descendants: 3 - Bits: 4
  D15S978 genotype for individual 8506002 is unlikely
[2.410e-02]
```

Parametric Linkage Analysis

This is a new addition to MERLIN's functionality.

One needs an additional file of penetrances and trait allele frequencies:

```
disease 0.01 0.0,0.5,0.5 dominant disease 0.10 0.0,0.0,0.5 recessive
```

Each line is trait, allele_frequency, penetrances, model_name.

The job is run as:

```
> merlin -d chr1.dat -m chr1.map -p chr1.ped -model
pkd.model
```

For multipoint analysis in small pedigrees, this is very fast.

Nonparametric Binary Trait Linkage Analysis

MERLIN can carry out the Kong and Cox nonparametric affected-pedigree-member analysis using either the "pairs" or "all" statistics, and using either the linear or exponential models.

The job is run as:

> merlin -d chr1.dat -m chr1.map -p chr1.ped -npl -pairs

Haplotyping

The default algorithm for this assumes there is no linkage disequilibrium between markers.

MERLIN can be requested to combine adjacent SNPs into haplotypes where the r² is above a threshold. This is a necessary preliminary to using closely associated SNPs for linkage analysis, as missing parental genotypes can be wrongly inferred if LD is neglected.