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INTRODUCTION

In contrast to clinical trials, there are no well-
established protocols in genetic epidemiology.
Genetic studies are technology driven, and as
long as genome technology and information
change rapidly, genetic epidemiology will remain
in a state of flux. For instance, as genotyping
increases in scope and drops in price, we are
seeing an accelerating shift from linkage analysis
to association testing [Risch and Merikangas,
1996]. The simplifying assumption of linkage
equilibrium among marker loci is no longer valid
for the dense genome scans of modern association
studies. Geneticists are also measuring new
phenotypes and actively looking for genetic and
environmental interactions. Within this changing
landscape, we have undertaken a massive over-
haul of our genetic analysis software Mendel
[Lange et al., 2001].

The current report summarizes our efforts
to upgrade the association testing capabilities
of Mendel. The upgrade itself is a complex

task because it involves sorting through the
enormous literature on association methods
and making difficult judgment calls on what
methods to include and exclude. There are no
road maps or consumer guides to steer the
process, so it seemed to us that laying out the
philosophy behind our choices and explaining
how users interact with Mendel might serve
a positive purpose. It is probably no great in-
justice to say that most software in genetic
epidemiology is poorly documented. Users are
perplexed by both the input conventions and the
interpretation of output. Such confusion decreases
the chance of mapping disease genes and erects
barriers to the entry of young scientists into
the field.

Of the current 22 Mendel analysis options, this
report covers the 6 devoted to association testing
and emphasizes new features not available else-
where. These features include: testing by pene-
trance estimation, expansion of matched-pair
designs to permutation unit designs, and imple-
mentation of the measured genotype approach for
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quantitative trait loci. Further detailed documen-
tation is distributed with the program.

GENERAL BACKGROUND ON
ASSOCIATION TESTING

Study designs vary from trait to trait and
investigator to investigator. Traditionally, most
association studies have relied on case-control
samples. Although genetic epidemiologists usual-
ly make no attempt to match cases and controls,
doing so can circumvent problems of ethnic
stratification. For economic reasons, DNA pooling
of cases and controls is an attractive option, at
least in the first stages of a genome association
scan [Sham et al., 2002]. Because haplotype phase
information is lost and meaningful consideration
of covariates is sacrificed, pooling seldom plays a
role in the end game of disease gene mapping. In
addition to case-control studies, association test-
ing is also carried out on parent-child trios,
sibships, and occasionally full pedigree data.
Indeed, many studies contain a mix of population
and family data. Integrating such data is a
challenge. Clearly, it would be useful in associa-
tion analysis to combine data on the multiple
affecteds within extended pedigrees with case-
control data. This inevitably raises the question
of dependence among the affecteds. As dis-
cussed later, Mendel addresses most of these
restrictions.

Study design must also take into account the
nature of the phenotypic data. For instance, some
traits are qualitative and some quantitative. When
geneticists investigate subclinical indicators rather
than simple affected-unaffected dichotomies, they
almost always deal with multivariate quantitative
traits. Although most geneticists feel the more
data the merrier, they do not always make the best
use of the entire spectrum of measurements.
Investigators sometimes lack relevant statistical
methods, sometimes appropriate analysis soft-
ware, and sometimes both.

Finally, there is the issue of microsatellites
versus SNP (single nucleotide polymorphism)
markers. The sheer abundance of SNPs and the
economies of scale in genotyping them are
pushing them quickly to the forefront. Because
the formation of SNP haplotypes involves phase
ambiguities, this trend has had the unintended
effect of resurrecting the problem of non-codomi-
nant markers when adjacent markers are com-
bined into super-markers for further analysis.

Mendel, incidentally, has this capability. For
example, an individual who has the heterozygous
genotype 1/2 at two adjacent SNPs can be
explained equally well by either of the haplotype
pairs 11/22 or 12/12. The benefits of codominant
alleles was one of the reasons that geneticists
embraced microsatellites and dropped classical
blood group markers years ago. In our view,
analysis software should be structured to avoid
the common practice of imputing best haplotypes
and using these in statistical analysis. Instead, the
analysis should consider all configurations,
weighting each according to its likelihood.

The statistics employed in association testing
are selected to match the nature of the trait and the
nature of the study sample. For case-control
samples, the obvious tactic is to compare allele
or haplotype frequencies in cases and controls.
This can be accomplished via a likelihood ratio
test or an exact test that conditions on marginal
allele counts in a contingency table. Mendel covers
both options. If ethnic stratification is a concern
and parent-child trios are available, then applica-
tion of the transmission/disequilibrium test (TDT)
is now standard [Ewens and Spielman, 1995;
Rubenstein et al., 1981; Spielman et al., 1993;
Terwiller and Ott, 1992]. The gamete competition
model is a parametric version of the TDT
appropriate for both parent-child trios and whole
pedigrees [Sinsheimer et al., 2000, 2001]. Versions
of the TDT and gamete competition tests exist for
quantitative traits [Horvath and Laird, 2002;
Sinsheimer et al., 2001].

When ethnic stratification can be ignored, we
prefer to model the allelic effects acting on a
quantitative trait as mean effects in a variance
component setting. Later in this article, we will
explain in detail a likelihood ratio test that
accommodates multivariate traits, probands, poly-
genic background, missing traits, and recessive
and dominant alleles. Our procedure is an
elaboration of the measured genotype approach
advocated by Boerwinkle et al. [1986]. Because the
distributional assumptions of the measured geno-
type test often fail in practice, we present a novel
permutation version of the test as well.

For affected-unaffected dichotomies, compari-
son of genotype-specific penetrances is an attrac-
tive approach to association testing, particularly
when covariate effects are large. The latest version
of Mendel allows for rudimentary estimation of
disease penetrances from ascertained pedigree
data. Unfortunately, we have not yet fully married
pedigree analysis and logistic regression, so
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simultaneous estimation of covariate effects will
have to wait for a later release.

Statistical inference can be broken down into
neat categories such as Bayesian, frequentist,
and nonparametric. Each of these find a home
in Mendel, but for reasons of computational
efficiency, Bayesian methods are the least devel-
oped. Frequentist methods share with Bayesian
methods a strong dependence on parametric
models. In some genetic settings, models are
justified. In other settings, models are more
suspect. Astute statisticians look for a convergence
of the evidence. Departures from large sample
assumptions are also a concern with frequentist
inference. Students learn the hard way that faulty
inference is often the consequence of low allele
and genotype frequencies. For this reason, we
have adopted permutation and gene dropping
procedures for hypothesis testing and P value
estimation in several options of Mendel. The
greater robustness of nonparametric procedures
often compensates for their loss of power.

PHILOSOPHY BEHIND MENDEL

The above quick overview of statistical infer-
ence in testing genetic association omits mention
of many statistical problems. Some of these
problems Mendel is designed to handle and some
it is not. For instance, Mendel makes no overt
corrections for multiple testing. In our view, the
best remedy for false positives is replication.
Another problem that Mendel partially dodges is
the confounding of linkage and association. In
defense of this attitude, most geneticists do not
care which of the two explains a significant P
value in a genome scan. Mendel’s most recent
addition, discussed in Cantor et al. [2005], tests for
association in the presence of linkage in the
classical setting of single point analysis.

Other problems Mendel tackles head on. These
include (1) the presence of probands, which is
handled by conditioning, (2) missing data, either
traits, covariates, or genotypes, (3) missing phases
for haplotypes, and (4) inordinate computation
times. One innovation in some Mendel options is
the automatic selection at runtime of either the
Elston-Stewart algorithm [Elston and Stewart,
1971; Lange and Elston, 1975] or the Lander-
Green-Kruglyak algorithm [Kruglyak et al., 1996;
Kruglyak and Lander, 1998; Lander and Green,
1987] for likelihood evaluation on each pedigree.
Because many pedigrees are still far beyond the

capacity of deterministic likelihood algorithms,
we have written parallel options in the Markov
chain Monte Carlo program SimWalk to handle
large pedigrees [Sobel and Lange, 1996]. Most of
these analogous options are devoted to linkage
analysis. The programs Mendel and SimWalk
cooperate in other ways, and we are constantly
striving to improve the interface between them.

What then are the design objectives of Mendel?
First, we have endeavored to build a common
platform for many problems in genetic epidemiol-
ogy and population genetics. The same program
can now be used for linkage analysis, association
testing, variance components, and QTL (quantita-
tive trait locus) mapping. Second, we have tried to
abide by clear, flexible conventions for input and
output. Third, we have written extensive docu-
mentation, to which this article contributes.
Fourth, whenever possible, we have programmed
analyses for general pedigrees. Any unnecessary
restriction on pedigree size or shape wastes
information and limits conclusions. Fifth and
finally, we have tried whenever possible to use
state of the art tests and estimation procedures.

When the last two objectives come into conflict,
we almost always come down on the side of
generality at the expense of application of closed-
form estimators and test statistics. In our view, the
field of genetic epidemiology is overly driven by
procedures for sibling pairs and nuclear families
simply because these procedures can be encapsu-
lated in precise formulas. As computers grow in
speed, there is little excuse for pushing methods of
analysis just because we can do the relevant
mathematics and identify the best estimators and
most powerful tests for a minority of the data. We
should not hesitate to use a computational sledge
hammer when paper and pencil prove inade-
quate.

ASSOCIATION TESTS BY
COMPARISON OF ALLELE

FREQUENCIES

The traditional method of testing for association
in case-control data is to compute maximum
likelihood estimates of allele frequencies in the
two separate populations and compare these to
the estimates in the combined population. The
null hypothesis that the frequencies are the same
in cases and controls can then be tested by a
likelihood ratio statistic, which in this case is
equivalent to a w2-test of homogeneity. To illustrate
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the test, the Mendel documentation features a
classic example involving association between
alleles of the ABO blood group and peptic ulcer
[Clarke et al., 1959]. Execution of Mendel is
initiated by a control file, which names relevant
input and output files, defines the analysis option,
and in this example, designated 6a in the
documentation, tells Mendel how to distinguish
between cases and controls via a data field labeled
HEALTH.

The Mendel summary file for this ABO/peptic-
ulcer example is shown in Figure 1. There we see
the estimated allele frequencies for the combined
population and a borderline significant likelihood
ratio test of homogeneity between the two
populations.

Several remarks are worth making about the
current option. First, there is no need for the data
to consist of isolated individuals; pedigree struc-
ture is respected as advocated by Boehnke [1991].
A copy number can be assigned to a pedigree to
avoid repeating identical pedigrees in the pedi-
gree file. This convenient feature is particularly
pertinent to a random sample where many cases
or controls have the same genotype. Second,
because the likelihood ratio test relies on large
sample theory, any significant result is suspect if
one or more estimated allele frequencies fall too
low. Fortunately, Mendel has an option that
facilitates the combination of rare alleles. As a
rule of thumb, each allele should be present in
each population a minimum number of times, say
between 3 and 5 times. By default, the Mendel
output includes a count of each allele and
phenotype in the data set. Third, this option
illustrates Mendel’s abilities in optimizing like-

lihoods and dealing with dominant and recessive
alleles. Fourth, if you distrust the implicit assump-
tion of Hardy-Weinberg equilibrium in this
analysis, it is possible to redo the analysis based
on genotypes or phenotypes rather than alleles.
For instance, in the APOE-Alzheimer’s example
described in our section on Association Tests with
Permutation and Matching, association is sought
with genotypes, and no assumption of Hardy-
Weinberg equilibrium is invoked.

The current option also permits estimation of
haplotype frequencies and testing for linkage
equilibrium. Example 6d of the Mendel documen-
tation considers three adjacent SNPs. If we omit
allele frequencies for these SNPs in the locus input
file, then Mendel will fill them in by gene
counting and search for the best estimates of the
eight haplotype frequencies starting from linkage
equilibrium values. The corresponding summary
file for this example contains the estimated
haplotype frequencies as shown in Figure 2.

Fig. 1. Allele frequency estimates for ABO in a peptic-ulcer case-control study, taken from Mendel’s summary file for example data set

6a.

Fig. 2. Haplotype frequency estimates, taken from Mendel’s

summary file for example data set 6d.
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Whenever an estimated frequency falls on the
zero boundary, Mendel automatically assigns the
estimate a standard error of zero. At the bottom of
the standard output file for this example data set
as seen in Figure 3, Mendel suggests that linkage
equilibrium fails. However, note the violation of
the stated condition that estimated haplotype
frequencies should be positive. One can resolve
ambiguous test results by invoking a different
Mendel option that conducts a nonparametric test
for linkage equilibrium. Alternatively, one can
construct a single super locus from the SNPs,
combine the rare alleles of the super locus, and re-
estimate allele frequencies. The estimated allele
frequencies are then, in effect, estimates of
haplotype frequencies or combined-haplotype
frequencies.

ASSOCIATION TESTS BY
PENETRANCE ESTIMATION

Another approach to association testing is
through the estimation of penetrance functions.
Suppose we assign each allele i of a candidate
gene a penetrance parameter fi, and let the
disease penetrance of the genotype i=j be the
product fifj. We can then estimate each fi by
maximum likelihood and test the null hypothesis
of no association, namely all fi ¼ f, by a like-
lihood ratio test. The penetrance estimation option
of Mendel combines the virtues of parsimony and
flexibility. It can exploit both pedigree data and
randomly sampled individuals. Like the gamete
competition model to be discussed later, it can
accommodate non-codominant markers such as
those constructed from multiple linked SNPs. If
study subjects are taken from a single ethnic
group, it is prudent to estimate allele frequencies
simultaneously. If multiple ethnic groups are
involved, Mendel does not permit estimation of
allele frequencies but does permit different fixed
allele frequencies to be employed for each ethnic
group. In our view, the application of ethnic-
specific allele frequencies for pedigree founders
adequately safeguards against population stratifi-

cation. Mendel’s computation times are reason-
able with as many as seven or eight alleles. If there
are more alleles or some alleles are rare, one
should lump the least frequent alleles.

Obviously, the user must communicate to
Mendel who is affected and who is not. Simple
commands such as

AFFECTED LOCUS OR FACTOR ¼ HEALTH

AFFECTED ¼ 2

in the control file tell Mendel in which phenotypic
field to look for disease status, and which label is
used for the affecteds. In the face of uncertainty
over someone’s disease status, it is probably better
to be conservative and list his or her disease
phenotype as unknown (blank).

Each pedigree may contain a proband through
which it is ascertained. Mendel needs to know
where to read proband status and which symbol
designates a proband. The commands

PROBAND FACTOR ¼ PROBAND

PROBAND ¼ 1

in the control file achieve this goal. With these
keyword values, a pedigree contains a proband if
one of its members has a 1 in the field PROBAND:
The penetrance estimation option of Mendel
corrects for ascertainment by conditioning on a
special proband pedigree automatically appended
to the list of pedigrees. This purely artificial
pedigree of unrelated probands is not reported
in the standard output file. During a likelihood
search, the loglikelihood of the proband pedigree
is subtracted from the sum of the loglikelihoods of
the actual pedigrees. Mendel’s penetrance estima-
tion option allows at most one proband per
pedigree. Multiple probands per pedigree are
permitted in the QTL association option discussed
later.

Like many analysis options of Mendel, the
penetrance option has several suboptions, or
models. Table I shows the eight models possible
in penetrance estimation. The first six of these
models are intended for biallelic loci. In Table I,
fi=j denotes the penetrance of genotype i=j:

Fig. 3. Results of a test for linkage disequilibrium, taken from Mendel’s standard output file for example data set 6d.
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ASSOCIATION TESTS WITH
PERMUTATION AND MATCHING

In testing for disease-marker association in
ethnically heterogeneous populations, permuta-
tion procedures offer one of the best avenues for
generalizing case-control studies. Testing can
proceed through matched groups of affected cases
and normal controls. Besides permitting the usual
paired designs for cases and controls, matching
can also accommodate sibling groups of affected
and normal children from large disease pedigrees.
In determining P values, permutation of case and
control labels is performed only within each
defined permutation unit and not across permuta-
tion units. Matching protects against ethnic
stratification and against information loss when
one representative of several statistically depen-
dent cases is arbitrarily selected for analysis. For
example, most linkage studies involve several
affecteds per pedigree. In a subsequent associa-
tion study with the same data, defining permuta-
tion units based on sibships with at least one
affected and unaffected, salvages many of the
affecteds from these pedigrees. Of course, if one
starts with random samples of cases and controls
from an ethnically homogeneous population, it
would be foolish to impose matching and limit the
scope of possible permutations.

Mendel’s cases and controls option operates by
constructing a contingency table of haplotype or

multilocus-phenotype counts. A multilocus phe-
notype can involve codominant genotypes at
some loci and non-codominant phenotypes at
other loci. Unfortunately, one cannot mix haplo-
type and phenotype data. The two rows of the
contingency table correspond to cases and con-
trols, and the columns correspond to particular
haplotypes or phenotypes, whichever paradigm is
selected. To assess case-control homogeneity,
Mendel evaluates two test statistics. Fisher’s exact
test is a good omnibus test across many cells. The
Zmax test has greater power when one or two cells
deviate strongly between the populations. The
theory behind these tests is explained in Lange
[2002], so we will focus here only on the
permutation procedures used. It is worth empha-
sizing that the tests involve no hidden assump-
tions of either Hardy-Weinberg or linkage
equilibrium.

In default mode, Mendel evaluates P values for
Fisher’s exact test and the Zmax test by permuta-
tion of case-control labels across an entire random
sample of people. In this instance, each person is
assigned to a single-person pedigree, which as
mentioned earlier may carry a copy number. If
phenotypes are compared, then as mentioned
earlier dominant or recessive alleles are allowed
at the participating markers. People with partially
missing phenotypes or haplotypes are ignored.
Because Mendel in effect conditions on the
margins of the contingency table, all allele
frequencies are irrelevant. Likewise, all recombi-
nation fractions are irrelevant. To analyze X-linked
phenotypes, males and females should be as-
signed to different permutation units, and male
phenotypes should be clearly distinguished from
female phenotypes.

As an illustration of how Mendel operates, we
consider case-control data from Columbia [Jacqu-
ier et al., 2001] and Japan [Yamagata et al., 1997]
on the association between APOE genotypes and
Alzheimer’s disease. This is example data set 12c
from the Mendel documentation. A typical pedi-
gree from this data set is shown in Figure 4, which
is extracted from the standard Mendel output for
this example. If we permute case-control labels

TABLE I. Mendel’s models for penetrance estimation

Model
number

Allele frequencies
estimated by

Mendel
Disease
model

Penetrance
restriction

1 Yes Unrestricted None
2 No Unrestricted None
3 Yes Dominant f1/2¼f2/2

4 No Dominant f1/2¼f2/2

5 Yes Recessive f1/1¼f1/2

6 No Recessive f1/1¼f1/2

7 Yes Multiplicative fi/j¼fifj

8 No Multiplicative fi/j¼fifj

Fig. 4. A typical case-control pedigree, taken from Mendel’s standard output file for example data set 12c.
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across the data set combining the two countries,
we clearly run the risk of detecting a spurious
association. To avoid this problem, we use a
matched test that defines each country as a
different permutation unit. The entries in the
control file

AFFECTED LOCUS OR FACTOR ¼ DISEASE

AFFECTED ¼ CASE

GROUP FACTOR ¼ COUNTRY

define cases and controls and the two permutation
units (Columbia and Japan).

Figure 5 presents Mendel’s results showing the
well-known increased prevalence of the 3/4
genotype. One can reanalyze the data for allelic
effects by inputting case-control alleles rather than
case-control genotypes.

TDT AND GAMETE COMPETITION
MODEL

As its name implies, the transmission/disequi-
librium test (TDT) controls for ethnic stratification
by focusing on the alleles transmitted to affected
children rather than the alleles present in all
affecteds. This perspective makes allele frequen-
cies irrelevant in computing P values under the
TDT. Of course, the power of the TDT to detect
disease association with a particular allele does
depend on the population frequency of that allele.
The TDT is best explained by considering a
contingency table of allele counts. The two rows
of the contingency table, as seen in Figure 6,
correspond to parental alleles passed and not
passed. The columns correspond to particular
alleles. Mendel avoids large sample approxima-
tions to P values in the TDT and instead permutes
the labels indicating which alleles are passed in
each parent-child combination.

The results seen in Figure 6 demonstrates that
Mendel uses a w2 statistic and a Zmax statistic. The
latter statistic makes it possible to identify the
most aberrant allele. The P values of the tests
based on these statistics are computed by inde-
pendent Monte Carlo permutations. The number
of such permutations is determined by the key-
word SAMPLES in the control file. The more
permutations employed, the shorter the 95%
confidence interval surrounding the P value
approximation reported by Mendel.

Fig. 5. Results of an association test, using country of origin as
matched permutation units, for APOE genotypes and Alzhei-

mer’s disease status, taken from Mendel’s standard output file

for example data set 12c.

Fig. 6. Typical TDT results showing the use of w2 and Zmax statistics, taken from Mendel’s standard output file for example data set 13.
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If one parent of a parent-child trio is untyped,
but the remaining parent and the affected child
are different heterozygotes, then the typed duo
contributes unbiased information and is used by
Mendel in the TDT [Curtis and Sham, 1995].
Because Mendel uses all typed parent-offspring
trios from a pedigree, it can confound linkage and
association, particularly when the data consist of
one or two large disease pedigrees already
showing linkage. With many small unrelated
pedigrees, the chance of confusing linkage with
association becomes less of an issue, and the TDT
statistics help to identify associated marker alleles.

The gamete competition model [Sinsheimer
et al., 2000, 2001] is a parametric substitute for
the TDT motivated by the Bradley-Terry model for
ranking items such as sports teams in a league
[Bradley and Terry, 1952; Keener, 1993; Lange
et al., 1988]. If allele i of a marker locus is assigned
parameter ti in the gamete competition model,
then

Prði=j! iÞ ¼ ti

ti þ tj

is the probability that a parent with heterozygous
genotype i=j transmits allele i to an affected child.
Mendelian segregation corresponds to the choice
ti ¼ 1 for all i. To test whether Mendelian
segregation is true, one can estimate the t’s from
pedigree data by maximum likelihood and per-
form a likelihood ratio test. Because the transmis-
sion probabilities Prði=j! iÞ are invariant under
multiplication of the t’s by a common constant, it
is necessary to impose a constraint such as t1 ¼ 1:

The gamete competition model accommodates
quantitative as well as qualitative outcomes,
allows for covariates, and makes effective use of
full pedigree data. For example, we can use a
disease severity index xk on child k by writing ti ¼
eoixk : This exponential reparameterization has the
advantage of eliminating the positivity constraint
ti40: Mendelian segregation in this setting
corresponds to the choice oi ¼ 0 for all i: In
maximum likelihood estimation, one should im-
pose a constraint such as o1 ¼ 0 and center the xk

so that they have mean 0.

In contrast to the TDT, the gamete competition
model does not require codominant marker
alleles. This is a major advantage when neighbor-
ing SNPs are combined into a super-locus. The
gamete competition model neatly circumvents the
phase ambiguities of a SNP super-locus by
including all possible haplotype phases in like-
lihood evaluation. This is a virtue of a likelihood-
based method compared to a nonparametric
method. Of course, likelihood methods do require
good estimates of haplotype and allele frequen-
cies. Mendel permits allele frequencies to be
estimated simultaneously with transmission para-
meters or to be fixed at previously determined
population estimates. Pedigree founders can be
assigned ethnic specific allele frequencies if ethnic
stratification is considered to be an issue.

As an example, consider the classical blood
group data of Lewis et al. [1980], incorporated as
example 8a in the Mendel package. Figure 7,
showing part of Mendel’s summary results for
these data, gives the most and least frequently
transmitted allele and their estimated t0s: For
these data, none of the gamete competition like-
lihood ratio tests is significant. Allele frequency
estimates and the asymptotic standard errors of
all parameters can be found in the standard
results file.

Example 8b from the Mendel documentation
applies the gamete competition model to a
quantitative trait. Data on a 287 base-pair inser-
tion/deletion polymorphism in the angiotensin-1
converting enzyme (ACE) gene are spread over
404 people in 69 families [Keavney et al., 1998].
The deletion allele is associated with high plasma
ACE activity. We name the quantitative trait and
separately standardize the male and female values
to have mean 0 and variance 1 through the
commands

QUANTITATIVE TRAIT ¼ ACE

TRANSFORM ¼ Degender :: ACE

in the control file. (If we wanted to standardize
ACE levels ignoring sex, we would instead use
TRANSFORM ¼ Standardize :: ACE:) Figure 8,

Fig. 7. Results of a gamete competition analysis for a qualitative trait, taken from Mendel’s summary file for example data set 8a.
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part of Mendel’s summary results, confirms
strong over-transmission of the deletion allele,
allele 2, to children with high ACE activity levels.
Again, fuller output appears in the standard
results file.

QTL ASSOCIATION TESTS BY
VARIANCE COMPONENTS

Quantitative traits are inherently more informa-
tive than disease dichotomies. Association tests
with quantitative traits often rely on statistical
procedures such as analysis of variance that
neglect familial correlations. A better approach is
to view association testing from the perspective of
variance components and to impose genotype or
allele-specific effects on trait means. This mea-
sured genotype approach controls for polygenic
background while remaining in the frequentist
domain of maximum likelihood estimation and
likelihood ratio tests [Fan et al., 2005; George
and Elston, 1987; Hopper and Matthews, 1982;
SAGE, 2001]. Two objections can be made to this
strategy. First, pedigree data may well be ascer-
tained and not random. Second, it is unclear how
to proceed in the presence of missing genotype
and phase data. The first objection can be partially
overcome by conditioning the observations on
the trait values of probands. Given codominant
markers, the second objection can be handled by
using only fully genotyped people. Unfortunately,
some of the most informative markers are
constructed by combining adjacent SNPs. The
phase ambiguities at SNP combination markers
mask the underlying haplotypes. If we retain
people in a pedigree sample who cannot be fully
haplotyped, then the likelihood of the data must
be expressed as a mixture of multivariate dis-
tributions. Admixture enormously complicates
likelihood evaluation and statistical inference
[Hasstedt, 1982].

As a resolution of this dilemma, one can
substitute conditional probabilities of genotypes
for genotypes. For markers with more than two
alleles, it is simplest to assume additive effects on

the mean. With additive allele effects, one must
compute the expected number of marker alleles of
each type carried by each person conditional on
the marker genotypes observed throughout his or
her pedigree. These conditional expectations can
then be viewed as covariates. Curiously enough,
the necessary expectations can be computed by
numerical differentiation. Recall that the like-
lihood L of a pedigree with n members is usually
represented as

L ¼
X
G1

� � �
X
Gn

Y
i

PenðXijGiÞ
Y

j

PriorðGjÞ

�
Y
fk;l;mg

TranðGmjGk;GlÞ; ð1Þ

where the ith person has phenotype Xi and
possible genotype Gi, the product on j is taken
over all founders, and the product on fk; l;mg is
taken over all parent-offspring triples [Ott, 1974].
The abbreviations Pen, Prior, and Tran in formula
(1) refer to the penetrance, prior, and transmission
functions of the model.

Now suppose that we include a factor bcða;GpÞ in
the likelihood (1), where cða;GpÞ counts the
number of marker alleles of type a in the marker
genotype Gp of person p. Then the derivative
d

dblnLð1Þ of the loglikelihood with respect to the
artificial parameter b becomes the expected
number of type a alleles carried by person p
conditional on the observed marker genotypes
throughout the pedigree. This trick works equally
well for codominant markers and SNP com-
bination markers displaying dominance. Observe
that quantitative trait values do not enter into
these computations. Once we construct covariates
giving the expected numbers of alleles, we can
test for additive allelic effects by a likelihood
ratio statistic in a purely variance component
setting.

Single-point estimation of allele counts does not
take into account evidence from neighboring
markers. SimWalk uses the data on all markers
simultaneously to create a Mendel readable file
containing the imputed allele counts at each locus
for each individual. SimWalk achieves this feat by

Fig. 8. Results of a gamete competition analysis for a quantitative trait, taken from Mendel’s summary file for example data set 8b.
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a Markov chain Monte Carlo (MCMC) method
that operates on descent states rather than descent
graphs, the underlying inheritance vectors de-
ployed in the Lander-Green-Kruglyak algorithm.
Descent states not only supply the paths the
founder genes take as they descend through the
pedigree, they also identify the alleles traveling
down those paths. SimWalk’s reliance on descent
states makes it possible to capture mistyping as
well. Mistyping is a common occurrence, and
SimWalk handles errors that are either consistent
or inconsistent with Mendelian inheritance [Sobel
et al., 2002]. Each possible allele is weighted
according to its posterior probability of being part
of the true genotype.

Of course, users of Mendel are shielded
from these complicated preliminary computa-
tions. The user’s role is to provide the data and
to communicate an analysis model through the
control file. For example, sample problem 20a
included in the Mendel package, uses the control
file:

ANALYSIS OPTION ¼ Qtl association

LOCUS FILE ¼ Locus20a:in

MAP FILE ¼ Map20a:in

PEDIGREE FILE ¼ Ped20a:in

VARIABLE FILE ¼ Variable20a:in

SUMMARY FILE ¼ Summary20a:out

OUTPUT FILE ¼ Mendel20a:out

QUANTITATIVE TRAIT ¼ Gc conc

PREDICTOR ¼ Grand :: Gc conc

PREDICTOR ¼ Sex :: Gc conc

PREDICTOR ¼ Age :: Gc conc

COVARIANCE CLASS ¼ Additive

COVARIANCE CLASS ¼ Environmental

The purposes of the new keywords appearing
here are worth discussing. First, the quantitative
trait Gc_conc is named. This trait represents the
plasma concentration of the human group specific
component. The Gc locus determines qualitative
variation in the GC transport protein for vitamin
D. A question of some interest is whether the
genotypes at the Gc locus also determine quanti-
tative differences in plasma concentrations. Data
bearing on this question appear in an article by
Daiger et al. [1984] and are reproduced in the
pedigree file in this data set. The study sample
consists of 31 monozygous twin pairs, 13 dizygous
twin pairs, and 45 unrelated controls. Gc concen-

trations and Gc genotypes are available on all
individuals. The two Gc alleles, 1 and 2, are
codominant.

Although it is not in evidence here, one of the
strengths of Mendel is its ability to handle multi-
variate quantitative traits and impose linear
models on their means. The commands in the
control file dictate a grand mean and regression
on sex and age for Gc_conc. A quantitative trait is
used for a person provided it and all of its
relevant predictors are present in the data. Thus,
some traits may be used and some ignored on the
same person.

Finally, Mendel fits variance components as
well as mean components. The current version of
Mendel supports five choices: additive polygenic,
dominance polygenic, a QTL component, a house-
hold component, and random environment. The
commands in the above example activate the first
and last of these components. For QTL mapping,
the conditional kinship coefficients required
at each map position are supplied internally
by Mendel for small pedigrees and externally
through a coefficient file generated by SimWalk
for large pedigrees. For a multivariate quantitative
trait, Mendel will stitch together the Kronecker
product matrices uniting the various univariate
traits for each variance contribution [Lange, 2002].

Something crucial appears to be missing in the
example control file. In testing for association, we
must include a mean component for each candi-
date-marker allele. Fortunately, Mendel does this
automatically for each marker under study. Given
a candidate marker, Mendel assigns a mean
parameter to each allele count variable and
imposes a constraint forcing these parameters to
sum to zero. It then estimates all parameters, both
mean and variance parameters, under the null
hypothesis of no association and under the
alternative hypothesis of association. The null
hypothesis is distinguished from the alternative
hypothesis by the elimination of the allele-specific
regression parameters, and the plausibility of the
null hypothesis is assessed by an asymptotic
likelihood ratio test. In the current data, the
summary output file indicates that allele 1 tends
to lower plasma Gc concentrations, allele 2 tends
to raise plasma Gc concentrations, and these
effects are highly significant (P value o10�5). If
we use the command MULTIVARIATE NORMAL ¼
False to reanalyze this data with a multivariate t
model to control for kurtosis [Lange et al., 1989],
then parameter estimates and P values change
very little.
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The fuller output seen in Figure 9, from the
bottom of Mendel’s standard results file, displays
the estimates for the six mean parameters and
two variance parameters under the alternative
hypothesis. Of course, one could also include
dominance and household variance components
in the model, but that would be over-fitting for
this small data set. We advise against using
the QTL variance component in a measured
genotype analysis as the two are conflated.
Mendel can also report outlier statistics for both
people and pedigrees. In the current example, the
statistics monitoring outlier pedigrees suggest a
departure from normality in the raw data. If we
reanalyze the data under the t distribution, then
all outliers either disappear or substantially
moderate.

One of the more useful features of Mendel is its
ability to report deviances pedigree by pedigree.
A pedigree’s deviance is twice the difference in its
loglikelihood (base e) under the alternative and
null hypotheses. Both loglikelihoods are evaluated
at the corresponding maximum likelihood esti-
mates for the entire sample. A pedigree with a
large positive deviance favors the alternative
hypothesis, while a pedigree with a large negative
deviance favors the null hypothesis. In some
genetic studies, clinical evidence such as age of
onset can be used to rank pedigrees on how likely
each is to depart from the null hypotheses of no
association. Mendel outputs the ordered-subset
deviance statistic of Hauser et al. [2004]. This is

helpful in deciding whether a particular prior
ranking is justified.

QTL ASSOCIATION TESTS BY
PERMUTATION

A major objection to the measured genotype
approach is that it relies on likelihood ratio
statistics whose asymptotic distributions are sen-
sitive to small sample sizes and departures from
normality. This objection is irrelevant to permuta-
tion tests. These tests depend on exchangeable
groups (permutation units) of people such as
sibships, mating pairs, and random samples from
different populations. Under the null hypothesis
of no trait-allele association, every permutation of
trait values within a unit is equally likely. Because
permutation tests are computationally intensive,
test statistics should be kept as simple as possible.

A plausible yet simple statistic is the minimum
of the sum of squares

Tðb; mÞ ¼ 1

2

X
i

X
j

xij � mi �
X

k

aijkbk

 !2

;

where i denotes a permutation unit, j a person
within permutation unit i, xij his or her trait value,
and aijk his or her imputed number of marker
alleles of type k. The parameters of the model are
the permutation unit effects mi and the allelic
effects bk. In order for all parameters to be
identifiable, we assume

P
k bk ¼ 0. To estimate

Fig. 9. Parameter estimates from the QTL association test by variance components for the Gc locus and the Gc_conc trait, taken from
Mendel’s standard output file for example data set 20a.

Lange et al.46



the parameters, we minimize Tðb;mÞ by introdu-
cing the Lagrangian function

Lðb; m; lÞ ¼ Tðb; mÞ þ l
X

k

bk:

Setting the partial derivatives of Lðb; m; lÞ equal
to zero gives the equations

0 ¼ �
X

j

xij � mi �
X

k

aijkbk

 !
ð2Þ

0 ¼ �
X

i

X
j

xij � mi �
X

k

aijkbk

 !
aijl þ l ð3Þ

for all permutation units i and alleles l, respec-
tively.

The test statistic T ¼ minb;mTðb; mÞ can be eval-
uated by applying the usual linear algebra
formulas to estimate the vectors b and m. But to
do this the tens or hundreds of thousands of times
required for permutation testing is cumbersome.
If the number of permutation units is large, it
involves repeatedly inverting large matrices. We
can avoid some of the implied matrix operations
by resorting to iteration. Let ni represent the
number of people in unit i and m the index of the
current iterate. Rearranging equation (2) gives the
update

mðmþ1Þ
i ¼ 1

ni

X
j

xij �
X

k

aijkb
ðmÞ
k

 !

¼ �xi: �
1

ni

X
j

X
k

aijkb
ðmÞ
k :

If we define y
ðmþ1Þ
ij ¼ xij � mðmþ1Þ

i , then the system
of equations (3) represents linear regression of
the y

ðmþ1Þ
ij on the covariates aijk subject to the

constraint
P

k bk ¼ 0. The usual way of viewing
such problems is to define the first and second
differentials

rbTðb; mÞ ¼ �
X

i

X
j

y
ðmþ1Þ
ij �

X
k

aijkbk

 !
aij

r2
bTðb; mÞ ¼

X
i

X
j

aija
t
ij;

where aij is a column vector with entries aijk. Least
squares estimation amounts to nothing more than
one step of Newton’s method subject to the
constraint. Starting from the point ð0;mðmþ1ÞÞ,
Newton’s method is implemented by solving the

linear system

r2
bT 1

1t 0

� �
b
l

� �
¼ �rbT

0

� �

in the form

b
l

� �
¼ r2

bT 1

1t 0

� ��1 �rbT
0

� �
:

Because r2
bTðb;mÞ is constant, the matrix inverse

displayed here can fortunately be computed
once and stored. At b ¼ 0, the vector rbT
depends on y

ðmþ1Þ
ij and hence on mðmþ1Þ and xij

but not on b.
These alternating updates of m and b are special

cases of the block relaxation method summarized
by de Leeuw [1994]. The local convergence theory
discussed there suggests that our algorithm
should converge quickly. In our practical experi-
ence, convergence occurs in 10 to 20 iterations.
The advantage of block relaxation in the present
context is that it avoids large matrix inversions
and replaces them with faster matrix times vector
multiplications.

There are some identifiability issues in estimat-
ing the parameters. For example, if a different
homozygous genotype is assigned to each sepa-
rate permutation unit, then the bk and mi will be
confounded. Also, by design any permutation unit
consisting of a single person contributes nothing
to the test statistic. It is also possible to formulate a
test statistic in terms of genotypic rather than
allelic effects. We have not done so because it can
sharply increase the number of parameters; of
course, biallelic markers are a useful exception. It
is noteworthy that the genotype version of block
relaxation avoids matrix inversion altogether
when genotypes are fully known.

ACE EXAMPLE

For a simple comparison of the TDT, gamete
competition, and two measured-genotype associa-
tion methods, we now turn to SNP data from the
ACE gene. Because the associations between ACE
levels and the SNP alleles are so strong, we
arbitrarily restricted analysis to 14 extended
families from the larger collection of white British
families mentioned earlier [Keavney et al., 1998].
We tested two SNPs, T-3892C and T-93C, located
upstream of the coding region and in linkage
disequilibrium with the insertion-deletion poly-
morphism. The naming convention for each SNP
incorporates its two alleles as the first and last
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letter of its name. In Mendel, the choice of
permutation groups for the QTL permutation
method is left to the user. For each of the 14
pedigrees, we defined a permutation group for
each sibling set and an additional permutation
group for the collected founders. In the TDT
analysis, we dichotomized the ACE levels so that
anyone with an ACE level greater than one
standard deviation above the mean was consid-
ered affected. In the control file we set
SAMPLES ¼ 100000 for the permutation tests
(QTL and TDT). Table II summarizes our statis-
tical findings and ranks the methods in descend-
ing order of their apparent power.

The C allele in both SNPs is associated with
high ACE levels. Reflecting the power loss
from dichotomizing the ACE levels, the TDT
shows the least significant P values in Table II.
The gamete competition model and the variance
component QTL test use the full pedigree data
and exhibit better power than the permutation
QTL test. Because it ignores transmission from
homozygous parents, the gamete competition
model suffers by comparison to the variance
component QTL test. In an effort to increase our
statistical power, we applied a utility option of
Mendel to form a super-locus from these two
SNPs. The alleles of the super-locus correspond to
haplotypes. Combining SNPs creates phase ambi-
guities, so our final comparison ignores the
TDT. All three remaining tests are still significant,
but only the permutation QTL appears to gain
power. Because the estimated TC haplotype
frequency was near zero, we used yet another
option of Mendel to consolidate this haplotype
with the TT haplotype in the gamete competition
and variance component QTL tests. The CC
haplotype was associated with the highest ACE
levels, and the TT haplotype was associated with
the lowest ACE levels in all three analyses. These
results tend to confirm our preconceptions about
the power of the various tests. Simulation studies
are probably necessary to declare a clear winner
between the gamete competition test and the
permutation QTL test.

DISCUSSION

Despite the vast literature on association tests
and the increases in size, scope, and number of
genetic studies, there is little agreement on the
best strategy for conducting association tests
in humans. Commercially available statistical
packages such as S-plus and SPSS are ill-suited
to handle the complex dependencies presented by
pedigrees and linked genetic markers. It is
unlikely that the large corporate software houses
will make much headway in such a murky
market, and users will probably continue to rely
on compact, quickly evolving, freeware. The
difficulty for users is not so much the lack of
software, but the poor quality of the documenta-
tion of most available programs. These quality
problems reflect the fact that statistical methods
are being proposed so rapidly that most programs
become obsolete before they are adequately tested.

Most users rely on word of mouth, short
courses, and luck to find appropriate software.
Once a program gains currency, it is treated as an
oracle by naive users. With little real under-
standing of computational statistics, such users
are inclined to compare software by raw speed,
ease of use, and graphical output. If two programs
purport to compute similar statistics but give
different answers, then the obvious temptation is
to cite the one with the more impressive P values.
Needless to say, this state of affairs is far from
ideal. It gives the impression that human geneti-
cists are sloppy and unreliable. Although science
is saved from the worst excesses of individual
scientists by its tradition of replication, replication
can be expensive.

It is unclear how to improve the software
confusion without crushing creativity. In our view,
it would be a mistake to create a governing body
for software development. A better remedy is for
journals such as Genetic Epidemiology to publish
more software reviews. The American Statistician
has done this successfully for a number of years.
Giving creators of software the right of rebuttal
might assuage some of their worst fears.

TABLE II. Comparison of ACE association P values (72 standard deviations)

Association test T-3892C T-93C T-3892C + T-39C

Variance component QTL 0.00001 0.00088 0.00003
Gamete competition 0.00042 0.00067 0.00134
Permutation QTL 0.0139870.00074 0.0132970.00072 0.0096770.00062
TDT 0.3435070.00300 0.0708070.00162
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Another possibility is to encourage the kind of
open source community that powers Linux. For
the open source paradigm to be successful,
mechanisms must be put in place to give
contributors appropriate publication credit. With-
out such credit, most academic scientists cannot
be promoted. Until the ground for open source
development is carefully cultivated, we can expect
to see more and more geneticists distribute
executable rather than source code.

The current article explores the third possibility
of using an article format for program exploration
and documentation. We have tried to mitigate the
pedestrian nature of this task by dwelling on some
of the innovations woven into Mendel. These
include association testing by penetrance estima-
tion, expansion of matched-pair designs to per-
mutation unit designs, and regression on expected
allele counts for quantitative traits. Mendel is also
notable for the caliber and variety of the tests
implemented, its common frameworks for input-
ting data and implementing models, and its user
friendly shell Gregor. We are disinclined to try the
reader’s patience further by describing Gregor.

Mendel is a work in progress. Our future
agenda includes (1) development of graphical
plots for location scores and other output, (2)
greater modeling flexibility through user access to
basic subroutines, (3) better coordination with
SimWalk and database software, and (4) addi-
tional options for inbred mice, longitudinal
quantitative traits, and gene-by-gene interaction.
We welcome users’ corrections and suggestions
for improvement.
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