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ABSTRACT

Genome-wide association (GWA) studies to map
genes for complex traits are powerful yet costly.
DNA-pooling strategies have the potential to dra-
matically reduce the cost of GWA studies. Pooling
using Affymetrix arrays has been proposed and
used but the efficiency of these arrays has not been
quantified. We compared and contrasted Affymetrix
Genechip HindIII and Illumina HumanHap300
arrays on the same DNA pools and showed
that the HumanHap300 arrays are substantially
more efficient. In terms of effective sample size,
HumanHap300-based pooling extracts `80% of the
information available with individual genotyping (IG).
In contrast, Genechip HindIII-based pooling only
extracts »30% of the available information. With
HumanHap300 arrays concordance with IG data is
excellent. Guidance is given on best study design
and it is shown that even after taking into account
pooling error, one stage scans can be performed
for `100-fold reduced cost compared with IG. With
appropriately designed two stage studies, IG can
provide confirmation of pooling results whilst still
providing »20-fold reduction in total cost compared
with IG-based alternatives. The large cost savings
with Illumina HumanHap300-based pooling imply
that future studies need only be limited by the
availability of samples and not cost.

INTRODUCTION

Genome-wide association (GWA) studies using arrays
are now widely used to map loci contributing to complex
disease in human populations [1–3]. However, high cost
limits widespread use of GWA. One approach which
substantially reduces the cost is DNA pooling. In pooling,
instead of individually genotyping every person in the
sample, the sample is genotyped in pools of individuals.

In most previous applications of array-based pooling,
researchers have focused upon Affymetrix arrays [4–10],
with a number of groups publishing statistical and
computational methods for analysing Affymetrix data
[4,7,11–13].
Pooling was originally proposed for small-scale geno-

typing approaches (i.e. not array based) and results were
mixed. This led to some scepticism about the value
of pooling in practical applications. Several different
groups have shown pooling to be tenable using large-
scale microarrays [3–5,14,6–10,12]. Array-based pooling
addresses concerns about practical applications because
(i) the error introduced through pool construction is
negligible [13] and (ii) the array error can be tightly
controlled by using sufficient numbers of replicate arrays.
Obtaining good overall pooling performance is therefore
dependent upon achieving low levels of array-specific
error.
Here we investigate the performance of the two main

array platforms available for pooling, Affymetrix and
Illumina, by applying arrays from both to the same pools.
We describe new methods for analysis of individual bead
level data on Illumina HumanHap300 arrays, including
a quality control measure. Compared with Affymetrix
Genechip HindIII arrays, we demonstrate substantial
improvements in pooling efficiency. We show that when
a sufficient number of arrays is used to control the pooling
error, the results from pooling can be very similar to those
obtained from individual genotyping (IG).

MATERIALS AND METHODS

DNA pools were constructed from 384 endometriosis
cases and 384 ethnically matched controls. All samples
were caucasian. Full details of the pool construction are
given elsewhere (7,15). The same pools were typed using
Illumina HumanHap300 arrays (�317 000 SNPs) and
Affymetrix Genechip HindIII arrays (�57 000 SNPs).
A total of 15 645 SNPs overlapped between the two
array types. Three replicate arrays of each type were
applied to each pool. The control pool data discussed in
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this publication have been deposited in NCBIs Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) and are accessible through GEO Series acces-
sion number GSE9307.
Samples were individual genotyped (IG) on the

Sequenom platform; full details are given elsewhere (16).
Fifty-one SNPs were individually genotyped (IG) based
on HumanHap300 pooling results. Out of the 51 SNPs,
41 were selected as a result of their being in the top 50
SNPs from pooling and a further 10 were selected on the
basis of their being in the top 1000 SNPs from pooling as
well as being good candidates on biological grounds.
A further 53 SNPs that had previously been typed
(independently of pooling results) also appeared on the
HumanHap300 arrays. For comparison with pooling
results, only SNPs that were genotyped on at least 350
of each 384 individual sample were used. The average
number of individually genotyped individuals per SNP
was 379 (i.e. on average, data were unavailable due to
drop out for five individuals per SNP).
The method applied to the Illumina array data was

a modification of a method described for Affymetrix
arrays (7). The information available on HumanHap300
arrays differs from that available with Genechip
HindIII arrays. Genechip HindIII arrays yielded multiple
measures of fluorescent intensity for each allele and these
were used to compute allele frequency estimates. To allow
pooling analysis an option in the Illumina software was
used to make raw two colour (green/red) beadscores
available as output from array scans. A small number of
SNPs had negative values for one or more beadscores and
these SNPs were discarded. The beadscores required
calibration because green beadscores tended to be larger
than red beadscores. HumanHap300 arrays had 10
strands per array, each with �31 700 SNPs. Each strand
on each array had a number of control SNPs to help
assess array quality. The control SNPs assessed staining,
allele extension, target removal, hybridization, stringency,
non-specific binding and non-polymorphic SNP intensi-
ties. Preliminary analysis of both the control SNPs
and the full data set indicated that the green/red
ratio systematically differed by strand and by array.
Calibration was done on a strand-by-strand basis by
re-scaling the red beadscore to make the mean value of
the pooling allele frequency (PAF)=0.5 (over all SNPs
on that strand); PAF was computed as the corrected red
intensity divided by the total (corrected red plus green)
intensity. On the HumanHap300 arrays, each SNP had up
to 64 PAF estimates per array (mean 18); with Genechip
HindIII arrays up to 10 PAF estimates were available per
array (mean 8). A new quality control metric which took
into account the variable number of PAF estimates per
SNP was developed for the Illumina data.

New quality control measure

An initial quality control step was applied to remove all
SNPs that did not have a total of at least 20 PAF estimates

per pool (i.e. per set of three arrays). The following quality
control (QC) metric was then calculated to identify
SNPs with PAF estimates that were very variable across
arrays

Q ¼
varðpcaseÞ=ðpcaseð1� pcaseÞ

varðpconÞ=ðpconð1� pconÞ

where pcase denotes the PAF estimates and pcase is the
mean PAF estimate (similarly for controls). It is necessary
to divide each variance on the right-hand side of the above
equation to take into account the changes in variance
when the frequency, p, changes; this follows because
frequency estimates are distributed as binomial with
variance p(1�p). The Q metric is defined as a ratio of
case to control values to flag SNPs which vary in
performance over replicate arrays. SNPs which have
high variance on some arrays but low variance on others
are unlikely to provide good results and these SNPs are
hence flagged as outliers. Very high or very low values of
Q denote outliers.

Given two independent random samples of observa-
tions from normal distributions, the ratio of the variances
is known to have an F-distribution with degrees of
freedom determined by the sizes of the two samples.
Simulations of binomial random variates in R (17) showed
(detailed data not shown) that Q will have a distribution
that is close to F with degrees of freedom (number of case
PAF estimates, number of control PAF estimates). That
is, the assumption that the frequencies are approximately
normal is reasonable for our purposes and we can use an
F-distribution to evaluate the null distribution of Q. The
simulations also showed that it is important to correct for
p(1�p) in the numerator and denominator of Q; failing
to do so leads to exaggerated Q values (because if for
example the case pool has frequency estimate closer to 0.5
then the variance is expected to be higher than the control
pool simply due to the fact that the binomial variance is
higher). To assess quality control, the P-values from the
relevant F-distribution were calculated—since the number
of PAF estimates is entered in the degrees of freedom, this
quality control routine appropriately takes into account
the variation in number of available PAF estimates for
any given SNP. Greater than 96% of SNPs had Q values
in a narrow band (0.5–2) around 1. We opted to discard
the 1006 SNPs (�0.3% of total) which gave P-values
<1/300 000 (i.e. we would expect to falsely discard one
SNP that actually passed QC). This seemed a sensible
balance between removing erroneous SNPs and retaining
working SNPs. Using Q in this way, we successfully
identified one false-positive SNP that was very significant
in pools but non-significant with IG.

Statistical Model

After correction for green/red ratio variability, we applied
a linear model-based approach (7). In the linear model,
the response variable is the set of PAF estimates for
each SNP. The predictor variable is case/control status.
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For the Affymetrix arrays, a general linear mixed model
was used to account for the structure of the data
(multiple replicates, sense/anti-sense information and
probe measurements). For the Illumina HumanHap300
arrays, such a model was found to offer no advantage over
a simpler model with only case/control status included.
This was because (i) HumanHap300 arrays have no sense/
anti-sense information and (ii) with HumanHap300
arrays, systematic variation between arrays (and array
strands) was accounted for in the green/red
calibration step.

For each array type, we estimated the pooling error
across all SNPs on each array (7). Two estimates are
possible. The first estimate, referred to here as pooling
standard deviation [(PSD, this equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðepool�1Þ

p
in

Ref. (7)], gives a useful estimate of the pooling error
across all SNPs but does not take into account the
variable precision of the allele frequency estimates
across different SNPs (precision varies by the number
of beadscores that contribute to the allele frequency
estimate for each SNP). The second estimate of pooling
error, [varðepool�2Þ in Ref. (7)] takes into account the
variable precision of the allele frequency estimate for
each individual SNP. The second estimate is used to
construct a test statistic T2�X for assessing the significance
of each SNP [appendix 2 in Ref. (7)]. T2�X was
constructed to have the same null distribution (i.e. same
number of false positives) as expected if IG was used (7)
and it was used to prioritize SNPs for follow up with
individual genotyping. Since the method is based
upon contrasting case and control pools, the effect of
unequal amplification of alleles is minimal as such effects
‘cancel out’.

Estimating pooling error using both individual genotyping
and pooling data

In addition to estimating the pooling error from just the
pooling results, we can obtain an alternative estimate of
PSD by contrasting the pooling and IG results. Denote the
estimates of allele frequency from pools as epa and epu and
the estimates from IG as pa and pu for cases and controls,
respectively. We write the pool estimates as

epa ¼ pa þ e

epu ¼ pu þ e

where e is the error due to pooling. We could obtain an
estimate of the pooling error by calculating varðepa � paÞ
(which is an estimate of the PSD2 in this context since
there is no binomial sampling variance) but such an
estimate would be inflated by any unequal amplification
of different alleles. Since in practice, we remove most of
the effects of unequal amplification by focusing on
the difference between cases and controls, the main
interest is in calculating an estimate of the pooling
error based on case–control differences. To do this we
calculate the variance of the differences between the

pooling and IG case–control differences. That is, we
utilize varððepa � epuÞ � ðpa � puÞÞ. varððepa � epuÞ � ðpa � puÞÞ
is useful because

varððepa � epuÞ � ðpa � puÞÞ

¼ varððepa � paÞ � ðepu � puÞÞ

¼ varðepa � paÞ þ varðepu � puÞ

¼ 2� PSD2

i.e. we can estimate PSD2 as half the variance of the
difference between case–control frequency differences for
pools and for IG.
Since the top 51 SNPs selected on the basis of

pooling will give biased estimates of PSD, a simula-
tion study was conducted to evaluate the effect of
different levels of pooling error. A total of 384 cases
and 384 controls, typed for 300 000 SNPs were
simulated. SNPs were split into 10 groups with minor
allele frequencies (MAFs) 0.06, 0.09, 0.11, 0.13, 0.16,
0.21, 0.26, 0.31, 0.35, 0.45 (MAFs selected to mimic those
from individual genotyping results for top 50
SNPs). A random normal variate with variance PSD2

was added to each frequency to mimic the effects
of pooling error. A test statistic comparing pooling
case–control frequencies was computed, together with
case–control allele frequency differences for pooling and
for IG.
Two hundred data sets were simulated and ana-

lysed using R (17). To evaluate the results in our
real data, we selected the top 50 SNPs on the basis
of the pooling test statistic from each simulation
replicate. These SNPs were examined to assess (i) The
pooling error estimate from varððepa � epuÞ � ðpa � puÞÞ=2
and (ii) The difference in frequency between cases
and controls for pooling and for the same 50 SNPs
with IG.

Partitioning pooling variance into array variance and
pooling construction variance with Illumina

A previous analysis of Affymetrix Genechip HindIII
arrays and these pools showed that the majority of
pooling error was due to errors on the arrays rather than
errors in pool construction (13). The same method was
applied here with Illumina HumanHap300 arrays to
partition the pooling variation into ‘technical’ errors
(errors related to obtaining pooling allele frequencies
from constituted pools, mainly driven by errors on arrays)
and pooling construction errors (errors related to DNA
preparation and pool construction). The method works by
contrasting the variation within arrays on a single pool
with the variation seen between pools. Here we have
three arrays on each pool (case, control). Given separate
estimates of varðepool�array�pairwiseÞ (from all six pairwise
combinations of arrays within single pools) and
varðepool�total�pairwiseÞ (from all nine pairwise combinations
of arrays across pools), varðepool constructionÞ can be
estimated by subtraction
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varðepool�constructionÞ

¼ varðepool�total�pairwiseÞ � varðepool�array�pairwiseÞ

For full details of the method see Ref. (13). There was
some variation in the number of beadscores per
HumanHap300 array so a weighted average was used
over all pairwise combinations when the terms in the
above equation were computed.

RESULTS

Using a method that estimates the pooling error
across all SNPs on an array, we estimated the PSD
for Affymetrix Genechip HindIII and Illumina
HumanHap300 arrays. The PSD estimate was 0.024
for Genechip HindIII arrays but only 0.007 for
HumanHap300 arrays. A similar disparity in pooling
error is seen when the allele frequency differences between
two arrays on the same pool (i.e. true difference is 0)
is calculated for each platform (Figure 1). There are
two possible explanations for the large decrease in
pooling error with Illumina HumanHap300 arrays.
First, the HumanHap300 arrays have more beadscores
(i.e. PAF estimates) per SNP than the Genechip HindIII
arrays have probe pairs (average numbers are 18 for
HumanHap300 and 8 for Genechip HindIII). Second,
whilst the HumanHap300 beadscores are true replicates
across the array, the Genechip HindIII probe pair
intensity scores consist of a central position for each
SNP, together with six offset positions. These offset
positions may not function as true replicates and may
provide results for pooling which have reduced precision.
To investigate if one poorly performing HindIII array was
adversely affecting results, each array in turn was dropped

from the analysis and PSD recalculated—the PSD
estimates were consistent with what would be expected if
all arrays performed similarly.

Figure 2 shows pooling-derived allele frequency esti-
mates for the 15 645 SNPs present on both array
types plotted against the IG-derived frequencies from a
sample of 271 publicly available caucasian controls (2).
The Genechip HindIII results are more variable than the
HumanHap300 results. The HumanHap300 results are
closer to the line y=x, with the Genechip HindIII results
showing systematic bias for small minor allele frequencies.
Both Genechip HindIII and HumanHap300 pooling-based
frequencies do not include correction for unequal ampli-
fication of alleles and this will account for some of the
variation seen in Figure 2. Since the main interest is the
difference between cases and controls it is instructive to
compare the standard deviation of the differences (SDoD)
between cases and controls. Concentrating on the differ-
ence between cases and controls (rather than say just the
control frequencies) ensures that any effects of unequal
amplification of alleles in pooling are minimized. SDoD
differs from PSD in two ways; (i) SDoD addresses the
difference in frequency between two samples rather than
the single sample frequency and (ii) PSD consists solely of
pooling error (i.e. array error plus pool construction error).
Unlike PSD, SDoD comprises pooling error (i.e. array
error plus pool construction error) plus the random
sampling error resulting from sampling individuals from
the population. With Affymetrix Genechip HindIII arrays,
the SDoD for the 15 645 overlapping SNPs is 0.041; the
analogous figure for Illumina HumanHap300 arrays
is 0.023. To provide a benchmark from IG, we computed
the SDoD in 271 individually genotyped publicly available
controls and a matched set of 269 caucasian (Parkinson’s)

Fig. 1. Affymetrix Genechip HindIII versus Illumina HumanHap300 array-specific error plots. The plots show the difference in allele frequency
estimates for a pair of arrays for each type on the control pool (actual difference in frequency for each pool=0). Affymetrix results are from a pair
of 50K Genechip HindIII arrays and the Illumina results are from a pair of 300K HumanHap300 arrays. These results are for a single pair of arrays;
in practice the array-specific error will be reduced through the use of multiple arrays.
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cases (2); in this case the SDoD for the same 15 645 SNPs is
0.025 (due to random sampling of alleles from the
population, assuming no association between most of the
15 645 SNPs and disease). With Affymetrix Genechip
HindIII arrays, the SDoD is higher than in the publicly
available (N=271 cases, 269 controls) IG-based sample,
despite there being more (384) cases/controls in the pools
(i.e. the random sampling error is smaller with N=384
pools but the moderately large pooling error increases the
total SDoD). For Illumina HumanHap300-based pooling,
the SDoD is smaller than in the N=�270 IG-based
sample, implying that the effective sample size (ESS)
is 4270. More precisely, the ESS estimates for
Genechip HindIII and HumanHap300-based pooling are
0:0252=0:0412 � 270 ¼ 103 and 0:0252=0:0232 � 270 ¼309,
respectively. Given the pool size, the HumanHap300-based
estimate of the effective relative sample size is 309/
384=0.80 for these 15 645 SNPs. The decrease in number
of arrays used was 384/3-fold, implying a 0.8�384/
3=102-fold decrease in cost compared with IG.

In addition to estimating the PSD from the pooling
results, we obtained an alternative estimate of the PSD by
contrasting the Illumina HumanHap300-based pooling
and IG results. The PSD estimate was 0.016 for the top 51
SNPs selected from pooling. This PSD estimate is inflated
because the top SNPs from pooling are likely to be the
SNPs that happen to have an unusually large pooling
error which influences case–control differences in the same
direction as the actual difference (from IG). The inflated
estimate was corrected by comparing it with simulation
results; these showed the top 51 SNP-based estimate was
compatible with a PSD of 0.01. Using both the IG and
pooling data for the 53 SNPs selected independently of
pooling yielded a PSD estimate of 0.011; since these SNPs
are not selected on the basis of pooling, no correction
is required to obtain a valid estimate of PSD. One SNP
was an extremely discordant between pooling and IG

(frequency difference �0.06); omitting this SNP from the
53 reduced the PSD estimate to 0.009.
Virtually all SNPs selected for follow up on the basis of

pooling replicated with IG—49 out of 51 SNPs (496%)
achieved nominal significance (p<0.05) when individually
genotyped. Figure 3 shows the allele frequency differences
between cases and controls for the two sets of SNPs
subjected to both IG and typing using HumanHap300
arrays on pooled DNA. For reasons given above, there is
bias away from the line y=x in the follow-up SNP results
(but not results for the SNPs selected independently of

Fig. 2. Publicly available caucasian control individual genotyping frequencies versus pooling frequencies for Affymetrix Genechip HindIII and
Illumina HumanHap300 arrays. The data are the 15 645 SNPs in common between the Affymetrix Genechip HindIII and Illumina HumanHap300
arrays. The frequency of the sample of 271 publicly available caucasian controls is on the y-axis, with the pooling frequencies from the N=384
pooled case/controls on the x-axis. The broken line is y=x. The solid line is the regression line.

Fig. 3. Comparison of Illumina HumanHap300-based pooling and
individual genotyping for 104 SNPs. The solid line is y=x. A total of
53 SNPs were selected independently of pooling results and 51 SNPs
were selected on the basis of pooling results.
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pooling). The average absolute case–control allele fre-
quency difference was 0.060 (0.024 SD) for the top 51
SNPs when IG was used. With pooling the upwardly
biased estimate of the average absolute difference was
0.097 (0.019 SD). Simulation indicated that this degree of
bias was consistent with a PSD of 0.01.
Previously we showed using Affymetrix Genechip

HindIII arrays and these pools that the majority of
pooling error was due to errors on the arrays rather than
errors in pool construction (13). The same method was
applied here with Illumina HumanHap300 arrays, result-
ing in the same conclusion; the estimate of pooling
construction error was very close to zero (the estimate of
pooling construction variance was slightly negative,
�0.000026). This is an important result because it implies
that the overall pooling error can be readily controlled by
the number of arrays. The method for estimating pool
construction variance will be useful in other studies
because it allows researchers to perform an additional
check on pool construction accuracy before follow-up is
done with individual genotyping.
The best overall pooling study design depends upon

whether the priority is either (i) obtaining results that are
essentially indistinguishable from IG or (ii) cost efficiency.
Figure 4 shows the power for different designs with the
number of cases and number of controls fixed at 2000.
Distributing a fixed number of arrays across several
subpools gives equivalent power to the same arrays with
one large pool (7) (assuming negligible pooling

construction error) so the exact pool size will not be
critical. Since we have empirical evidence that pools of
�400 individuals are effective, we split each 2000 into five
pools. If obtaining results close to those from IG is
required then using 15 or possibly 30 Illumina
HumanHap300 arrays is required (i.e. the case where
either 3 or 6 arrays are used per pool of 400 individuals). If
cost efficiency is paramount, 10 HumanHap300 arrays per
2000 individuals still gives reasonable power; the cost of
arrays is 200 times less than with IG. If the number of
cases/controls is not fixed, then applying �15 arrays to
3000 cases/controls would give the same power as IG
applied to 2000 (in practice this might involve using two
arrays for each of eight pools with 375 individuals/pool).
That is, if a 50% larger sample were available for pooling
the power would be the same as shown for IG in Figure 4
but with a 2000/15=133-fold reduction in array cost.
Because of the large PSD, Affymetrix Genechip HindIII
arrays yield substantially lower power; �150 Genechip
HindIII arrays are required to obtain results similar to
those seen with 15 Illumina HumanHap300 arrays.

The most efficient designs for genome-wide association
are multi-stage designs (18–21). Since pooling offers a low
cost per genotype, the optimal two-stage design (relative
to an IG-based study) will have a larger proportion of
samples in stage 1 and a smaller proportion of markers in
stage 2. Consider a specific example with the same
assumptions as in Figure 4 and effect size GRR=1.35.
Assuming that the stage 1: stage 2 cost ratio (per genotype)
is 30 with IG, the best design that gives 80% power
involves using 34% of the sample in stage 1 with 0.44% of
markers in stage 2 (1700 markers); calculations were done
using CaTS (19). Assuming that �500 000 SNP arrays cost
$US800 each, and that stage 2 genotyping costs �$US0.05
per genotype, this IG-based study costs �$US1.3 million.
With pooling, it is advantageous to use a high proportion
of the sample in stage 1, with a small proportion of
markers in stage 2. If three pools of 400 (three arrays
per pool) are used in stage 1, the effective sample
size (in terms of equivalent number of individually
genotyped individuals) is 960. To ensure the same power
as with IG, 215 markers should be followed up in the
remaining 800 individuals in stage 2. This power calcula-
tion is based upon ‘joint analysis’ in the sense defined by
Ref. (19); this can be achieved in two ways. First, the
whole N=2000 sample can be genotyped for the 215
markers and a test of association calculated on the IG
data for the 215 markers; in this case the cost of the
pooling and IG components are �$US14000 and
�$US43000, respectively. Here, since IG is done on
stage 1, the pooling results can be confirmed with IG
before markers are chosen for follow-up. Second, the stage
2 sample alone can be genotyped for the 215 markers (with
IG done only in stage 2, IG costs are $US17000), with the
results from the pooling used for the joint analysis of
the 215 markers. The results from the pooling can be
used in a joint analysis by combining the corrected test
statistic (T2�X from methods section and (7)) with the test
statistic from the IG-based stage 2 sample; this form
of joint analysis is valid because the statistic T2�X has
the appropriate false positive rate (7). The overall

Fig. 4. Power curves for individual genotyping and pooling. Power is
for 2000 cases, 2000 controls. ‘30x HumanHap300’ assumes 6 Illumina
HumanHap300 arrays per N=400 pool. ‘15x HumanHap300’ assumes 3
Illumina HumanHap300 arrays per N=400 pool. ‘10x HumanHap300’
assumes 2 Illumina HumanHap300 arrays per N=400 pool. ‘15x
Genechip HindIII’ assumes 3 Affymetrix Genechip HindIII arrays per
N=400 pool. PSD is taken to be 0.009 for Illumina HumanHap arrays,
0.024 for Affymetrix Genechip HindIII arrays. Assumptions for power
calculation are a multiplicative disease model, marker allele frequency
and disease allele frequency both =0.4, complete linkage disequilibrium
between marker and disease alleles, alpha=0.0000001 (i.e. 500 000
tests), disease prevalence 0.01.
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pooling-based two stage cost is therefore in the range
$US50000 (no IG on stage 1 samples) to $US80000
(with IG on stage 1 samples); we assume �$20000 pool
construction costs. An overall cost of $US50000-80000
implies a decrease in overall (two-stage) cost compared
with IG of �20-fold. The main component of the pool
construction cost is labour. This cost has to be balanced
against the additional labour cost with IG of running large
numbers of arrays in stage 1 and of running substantially
more SNPs in stage 2. In practice, the costs are unlikely to
be markedly different in either case, with the associated
costs unlikely to exceed a few tens of thousands of dollars.

If either a larger proportion of the sample is used for
pooling or if more arrays are used per pool, the most cost-
efficient design in terms of statistical power involves using
fewer SNPs in stage 2. However, in such circumstances,
some practical issues arise. It will generally not be efficient
to genotype a very small number of SNPs (<25 on the
Sequenom platform, say). Also, although our novel quality
control method managed to identify the one SNP that
performed poorly when individually genotyped, in practice
some redundancy should be built into the list of SNPs
chosen for follow-up to cover cases where poorly perform-
ing SNPs are not identified. In the specific case of
Sequenom, up to 250 SNPs can be efficiently genotyped
in a moderate time frame and samples of this size seem a
sensible balance between cost efficiency and robustness to
the occasional pooling artefact. Increasing the number of
markers in stage 2 above �300 is not an attractive option;
this is because of (i) decreased cost efficiency and (ii) the fact
that medium-scale platforms such as Illumina OPAs are
only cost effective with much larger sets of SNPs (41500).

DISCUSSION

Estimates of the variation in allele frequencies due to
pooling errors were derived both from information across
many SNPs on an array and from comparing pooling and
IG results. The results were broadly similar in either case,
with PSD estimates ranging from 0.007 to 0.011 for
Illumina HumanHap300 arrays. The pooling error was
substantially larger for the Affymetrix Genechip HindIII
arrays (PSD estimate 0.024), with the error appearing to
systematically worsen for small minor allele frequencies
(Figure 2). For the purposes of calculating the number of
arrays required to maintain the pooling error at a given
level, the relevant measure of pooling error is the pooling
variance, not the standard deviation. On the variance
scale, Genechip HindIII arrays show 5–10 times increased
variance compared with HumanHap300 arrays. That is, to
achieve equivalent results, a 5–10-fold increase in the
number of arrays will be required if Genechip HindIII
rather than HumanHap300 arrays are used. We have not
attempted to account for the cost of the different array
types. The price of arrays changes so quickly that any
conclusions drawn would very rapidly become out of date.
At the time of writing Affymetrix Genechip HindIII arrays
cost less than Illumina HumanHap 300 arrays and this
may allow researchers to simply use more arrays to offset
the decreased efficiency of the Genechip HindIII arrays.

TheAffymetrix 100k array set includes theHindIII array,
along with another array, the XBA (�50 000 SNPs per
array). We applied six Affymetrix XBA arrays to the pools
described above (three arrays per pool). The estimates of
pooling error were similar to those seen for the HindIII
arrays, with a PSD estimate for the XBA arrays of 0.029.
This result was expected because the XBA arrays contain a
similar number of probes per SNP as the HindIII arrays.
Here we consider only Affymetrix 100k and Illumina

HumanHap300 arrays. There are several other array types
that would be potentially suitable for pooling. Affymetrix
500k arrays are similar to their 100k arrays; the main
difference is that the number of probe pairs available per
array is reduced from 10 to 6. Since the overall pooling
error appears to be strongly related to number of available
probe pairs, it seems likely that, compared with
Affymetrix 50K arrays, more Affymetrix 500k arrays
would need to be used to maintain the pooling error at a
suitably low level. Illumina offer 550K arrays; these arrays
contain a superset of the SNPs on the Illumina 300k
arrays and have the same constellation of bead scores.
This means that results would be expected to be similar to
those seen here. Both Illumina and Affymetrix have
released 1 million SNP arrays. Such arrays are potentially
very useful for pooling for two reasons. First, the
increased redundancy means that, providing pooling
error is essentially random across SNPs, the chance of
pooling missing a real signal is decreased because several
SNPs will tag any variant of interest. As long as at least
one of these tagging SNPs have the expected (small) level
of pooling error then the pooling will detect any true
associations that are detectable with IG. Second, using
these very dense arrays with pooling may offer an
inexpensive means of ‘filling the gaps’ from a previous
IG-based GWA study based on 100k/300k arrays.
The pooling approach here is designed for simple

case–control analysis. If there are subgroups of cases/
controls (e.g. sex, age), then in IG-based approaches these
can be dealt with by fitting them as covariates. This is not
possible with pools but providing pools are suitably
designed in advance this is not a problem. For example,
since studies large enough for powerful GWA analysis are
typically large (say N=1000 cases, N=1000 controls,
ideally larger), separate pools can be constructed for say
males and females (with N=250 or 500 per pool, with
different sexes in separate pools). For quantitative
covariates, separate pools can be made with say high,
medium or low covariate values. The factor limiting how
much information is lost compared with an IG-based
design would be howmany separate pools can efficiently be
made based on covariate information. Above we used 3
Illumina HumanHap300 arrays per �400 individual pool;
since the main determinant of error in pooling appears to
be in array-specific errors instead of pooling construction
errors, similar results to the 3 arrays per N=400 case
should be possible with 3 N=133 with one array per pool.
In this case since each pool is relatively small, the available
sample could be divided into several pools, each with a
different covariate grouping (e.g. bottom 10th percentile,
10th–20th percentile, etc.). Another limitation of pooling is
that only allelic tests (rather than genotypic or haplotypic)
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of association are available. Allelic tests are the most
widely reported in the literature for IG-based studies.
Because allelic tests are powerful for a range of disease
models, most researchers focus their efforts on tests of this
type (these tests typically only have 1 degree of freedom,
compared with 41 for tests of genotypes/haplotypes).
For analysis of quantitative traits (instead of disease

traits), pooling may also be advantageous because much
of the information for association is contained in the tails
of the distribution and pools can be constructed using
individuals from the extremes of the distribution. Detailed
design and analysis of such studies is beyond the scope of
this article and is discussed elsewhere (22).
In summary, a number of sources of information have

been used to estimate the magnitude of pooling error
with two array types on the same pool. Illumina
HumanHap300 arrays offer substantial increases in
accuracy for pooling and this greatly extends the useful-
ness of pooling. Concordance between individual geno-
typing and pooling is expected to be excellent. With
HumanHap300-based pooling, very few arrays are
required to extract the majority of information on
association from a sample and the limiting factor in
future genome-wide association studies is likely to be
available sample size and not cost.
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