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ECENT studies employing single-sperm haplotyp-
ing (JEFFREYsS and NEUMANN 2002), pedigrees
(VIssERr et al. 2005), and population studies using dense
genetic marker data (CRAWFORD et al. 2004; MCVEAN
et al. 2004; MYERS et al. 2005) have shown that there is a
large amount of local variation in recombination rate
in the human genome. Methods to estimate fine-scale
recombination rates from population data have been
based upon coalescent-based models (L1 and STEPHENS
2003; FEARNHEAD et al. 2004; McVEAN et al. 2004). Re-
cently, CLARKE and CARDON (2005) proposed a novel
way to estimate recombination rate and the position of
recombination hotspots by using information on hap-
lotype frequencies from multiple closely linked marker
loci from pedigree data. Recombination rate in CLARKE
and CARDON (2005) was defined as “the probability that
a transmitted haplotype constitutes a new combination
of alleles different from that of either parental hap-
lotype” (CLARKE and CArRDON 2005, p. 2086). This
method has appeal because it is “model free,” com-
putationally fast, and applicable to pedigree structures
(parents and progeny) that are widely available in hu-
man and animal populations. The authors claim that
they can distinguish between linkage and linkage dis-
equilibrium by this method. It was unclear to us how
this critical information was obtained, however, for at
the level of =10 kb, the size of a typical “hotspot,” the
number of new recombinants in a sample of <100 in-
dividuals is very small; and, further, CLARKE and CARDON
(2005) give an example (their Figure 4) where the posi-
tions of purported hotspots seem unrelated to the
positions of recombination events. In addition, as the
authors clearly note, because this method worked when
no additional recombination was simulated from par-
ents to progeny, recombination in the current gen-
eration does not have a significant impact on their
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estimates of population recombination rates such that
their method appears to capture historical recombi-
nation rate information. It was not clear to us how
the CLARKE and CARDON (2005) method accounts for
linkage disequilibrium (LD) information and how it
estimates recombination rate. In view of the analysis we
show here, we conjecture that, because the authors
constrain the estimates of the recombination fraction
between each pair of markers to be nonnegative, their
estimates of the recombination rate depend on the
amount of LD. This dependence occurs because these
constrained estimates depend on the sampling errors
of the unconstrained estimates, which in turn depend
on the magnitude of LD.

From a sample of individuals in the parental gener-
ation [CLARKE and CARDON 2005 used Centre d’Etude
du Polymorphisme Humain (CEPH) trio data from the
HapMap project (ALTSHULER et al. 2005) ] estimates are
obtained of haplotype frequency at biallelic (SNP) loci
f)aba ﬁaB» Z7Ab7 [A}AB, with D = ,?Jabf?AB - ﬁan?Ab- (The fol-
lowing argument applies even if these frequencies are
known exactly.) In a sample of n haplotypes in the off-
spring generation, the numbers observed are n4p, etc.
Assuming the recombination fraction is ¢, the expected
frequency of ab is p,, — De in the offspring, giving the
likelihood equation (Equation 4 of CLARKE and CARDON
2005)

L(C) — (ﬁub _ bc)mh([}aﬂ +DC)"”“(IA9A1; +DC)"M(1A9AB _ D(;)MB

(1)

from which the maximume-likelihood (ML) estimate ¢ of
¢ is obtained. We note from Equation 1 that ¢ can be
estimated only when the estimated disequilibrium in
the parental generation is nonzero. As ¢ from any single
pair of loci has a very large sampling variance, CLARKE
and CArRDON (2005) combine estimates from a number
of adjacent pairs of loci to obtain an estimate for a
genome region. To do this they weight estimates by the
inverse of their sampling variance V(¢) = 1/1(c), where
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I(¢c) = —d&In[L(c)]/dis the information content (their
Equation 5):

Ie :D2<A Mab g Man_
=N G = D7 G + D7
NAp NAB
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As an insight into the information content, we take
expectations over numbers sampled. To define hot-
spots, CLARKE and CARDON (2005) consider regions of
<100 kb, and hence assuming average recombination
rates of 1 cM/Mb (KONG et al. 2004), values of care likely
to be <0.001 even when hotspots are present within
them; and they use a sample of size n < 100 as in the
CEPH data. Therefore I(¢) depends so little on ¢ that we
can ignore cin its calculation, e.g., assuming p,, — Dc ~
pap Taking expectations over numbers sampled, e.g.,
E(n.,) = npu, and, to simplify formulas, expectations
over numbers in the parental generation,
E[1(e)] = nD*(1/ pay + 1/ pan + 1/ pas + 1/ pan)

= m’QHAHB/mh, (3)

Q

where H is heterozygosity, r is the correlation of gene
frequencies, and mj, is the harmonic mean of the hap-
lotype frequencies. Equation 3 shows that the infor-
mation content becomes infinitely large as Lewontin’s
D' — 1 (when one or more of the haplotype frequencies
approaches zero) for any gene frequency. To get some
“feel” for (3), if pa = pp = 5, then pu, = pap = 3(1 + 1),
pas = pas = 3(1 — 1), and E[I(c)] = mr*/(1 — r*). When
averaging over pairs of sites, estimates of ¢ therefore
receive more weight from those pairs of markers in
high LD.

The information content plays a more important role
here than in the weighting of the estimates, however.
The approximate sampling error of ¢ for gene frequen-
cies of 0.5 is SE(2) ~ V[(1 — r?)/(nr?)], e.g., 0.49, 0.23,
and 0.075 for n = 100 and r = 4D = 0.2, 0.4, and 0.8.
Consequently, if ¢is small, say <0.001, ¢ < SE(¢) so there
is a probability of nearly one-half that an unconstrained
ML estimate of ¢ from (1) would be negative. G. M.
CLARKE and L. R. CARDON (personal communication)
constrain ¢ =0 for each pair of markers, and negative
estimates are set to zero. Hence estimates of care biased
and, if ¢is small, approximately half the estimates would
be zero and half equal to a randomly sampled non-
negative variate, £(2) —1(0) + 3(0.8)(SE(2)) ~ 0.4SE(2),
because the expectation of x| x>0 ~ 0.8 for a normal
deviate. For example, E(¢)—0.4y[(1 —»?)/(nr?)] for
pa = pp = %, e.g., 0.20, 0.09, and 0.03 for n = 100 and
r = 0.2, 0.4, and 0.8; thus the estimate is roughly
proportional to the reciprocal of historical LD. In other
words, when ¢ is very small, ¢ does not estimate recom-
bination rate but its expectation is a function of LD.
When estimates of care weighted over adjacentsites, such

TABLE 1

Expectation of estimates of recombination rate (c¢) from
Monte Carlo simulation each with 10,000 replicate
samples of n offspring, with gene frequencies %
and linkage disequilibrium D in the parents

Unconstrained ¢ c=0
n c D ¢ SD(¢) ¢ SD(¢)
100 0 0.1 0.000 0.227 0.091 0.134

0.2 0.000 0.076 0.030  0.047
0.001 0.1 0.000 0.230 0.094  0.138
0.2 0.000 0.074 0.029  0.046
0.01 0.1 0.013 0.232 0.099  0.143
0.2 0.012 0.076 0.036  0.051

1000 0O 0.1 0.000 0.072 0.029  0.043
0.2 0.000 0.024 0.009  0.014

0.001 0.1 0.002 0.072 0.029  0.043

0.2 0.001 0.024 0.010  0.014

0.01 0.1 0.011 0.073 0.035  0.047

0.2 0.010 0.024 0.016  0.018

Estimates of ¢ are either unconstrained, ¢.e., may take positive
or negative values, or are constrained such that ¢ = 0.

an estimate would get a weight of 1/SE(2)*. Hence, for
a pair of close markers ¢ estimates the reciprocal of
historical LD between those markers and the larger the
LD the more weight s given to the estimate. As individual
estimates of ¢ are biased by the constraint that ¢=0,
averages over pairs of loci in the same region will also be
biased and depend on the LD in that region.

We illustrate these conclusions (Table 1) by simula-
tion, taking as an example the case where gene fre-
quencies are % at each locus and there is some linkage
disequilibrium (D = /4 = 0.1 or 0.2) in the parental
generation; otherwise Equation 1 cannotyield a positive
solution for ¢. Haplotype frequencies in the progeny
generation were simulated from a multinomial distri-
bution, given values of the allele frequencies at both loci
(), disequilibrium in the parental generation (D =
0.1, 0.2), and the recombination rate (¢ =0, 0.001, and
0.01). Maximum-likelihood estimates for ¢ were ob-
tained using Equation 1, assuming that the parameters
in the parental generation were known. Results show
that if no restriction is placed on the sign of ¢ then
estimates of care unbiased. Their sampling error is large
if the sample size is small and, as expected, becomes
smaller as parental D increases. If, however, the esti-
mates are constrained such that ¢ =0, the estimate of ¢
is biased upward and depends little on the true value of ¢
if nc < 1; but it is, however, a function of D. Indeed, as
we predicted above, it is ~0.4 times the SD of the
unconstrained estimate of c.

In the example given by CLARKE and CARDON (2005),
data are on trios of parents and offspring, but the
likelihood equations they present (their Equation 4,
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our Equation 1) apply to samples of data on unrelated
individuals from two generations in the same popula-
tion. When the haplotype information is available on
both parents and offspring, both the number of op-
portunities for detectable recombination, which is the
number of parents heterozygous at both loci, and the
number of recombinant gametes can be counted di-
rectly. The maximum-likelihood estimate of ¢ is simply
the ratio of these numbers, independent of D, which is
binomially distributed with information proportional to
the expected number of double-heterozygote parents,
e.g., n(1 + 7#)/2 for gene frequencies % This would for-
mally provide better estimates of the recombination
fraction than Equation 1. Estimates of ¢ from each pair
of loci would be weighted differently as the information
contentis a different function of D, and if constrained to
be nonnegative they would also be approximately pro-
portional to the corresponding sampling error and
identify regions of high LD. Indeed, the likelihood
Equation 1 that applies to a sample drawn in the
progeny generation is essentially equivalent to taking a
subsample of parental haplotypes and the pedigree
design is not pertinent to the method.

For long regions of the genome, on the megabase
scale, in which several recombination events have oc-
curred between the generations, ¢ exceeds the SE of its
estimate, and the method of CLARKE and CARDON
(2005) may become an increasingly better estimate of
¢ and discriminator between historical and recent
recombination. But, for small regions of the genome,
the probability of observing recombination events
within the pedigree is so low that their estimate of the pa-
rameter ¢is not an estimate of the local recombination
rate but is proportional to an estimate of its sampling
error, which is then scaled to recombination rate using
values estimated over longer regions of the genome. As
the sampling variance is approximately inversely pro-
portional to the amount of LD between markers,
CLARKE and CARDON’s (2005) method utilizes historical
LD. It therefore detects hotspots by differentiating
between high and low areas of LD in the genome as

do other methods; but those are designed to make best
use of the information on LD (Lt and STEPHENS 2003;
MCVEAN et al. 2004). When data on both population LD
and enough independent recombinations in parent—
offspring trios are available, it seems to us that their
combination should make formal use of their separate
sampling properties.
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