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Abstract Quantitative trait locus (QTL) mapping stu-
dies often employ segregating generations derived from
a cross between genetically divergent inbred lines. In the
analysis of such data it is customary to fit a single QTL
and use a null hypothesis which assumes that the
genomic region under study contributes no genetic vari-
ance. To explore the situation in which multiple linked
genes contribute to the genetic variance, we simulated
an F,-mapping experiment in which the genetic differ-
ence between the two original inbred strains was caused
by a large number of loci, each having equal effect on the
quantitative trait. QTLs were either in coupling, disper-
sion or repulsion phase in the base population of inbred
lines, with the expected F, genetic variance explained by
the QTLs being equivalent in the three models. Where
QTLs were in coupling phase, one inbred line was fixed
for all plus alleles, and the other line was fixed for minus
alleles. Where QTLs were in dispersion phase, they were
assumed to be randomly fixed for one or other allele (as
if the inbred lines had evolved from a common ancestor
by random drift). Where QTLs were in repulsion phase
alleles within an inbred line were alternating plus and
minus at adjacent loci, and alternative alleles were fixed
in the two inbred lines. In all these genetic models a
standard interval mapping test statistic used to deter-
mine whether there is a QTL of large effect segregating
in the population was inflated on average. Furthermore,
the use of a threshold for QTL detection derived under
the assumption that no QTLs were segregating would
often lead to spurious conclusions regards the presence
of genes of large effects (i.e. type I errors). The employ-
ment of an alternative model for the analysis, including
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linked markers as cofactors in the analysis of a single
interval, reduced the problem of type I error rate, al-
though test statistics were still inflated relative to the
case of no QTLs. Itis argued that in practice one should
take into account the difference between the strains or
the genetic variance in the F, population when setting
significance thresholds. In addition, tests designed to
probe the adequacy of a single-QTL model or of an
alternative infinitesimal coupling model are described.
Such tests should be applied in QTL mapping studies to
help dissect the true nature of genetic variation.
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Introduction

Animal and plant breeding has got along very well with
a theory based on an infinitesimal model, i.e. that genetic
variance is controlled by an infinite number of indepen-
dent genes of infinitesimally small effect. Although obvi-
ously ultimately unrealistic, this model has provided a
useful and relatively accurate framework for designing
breeding programmes and predicting their results, to
which the many successes of animal and plant breeding
testify. Recently, with the advent of genetic marker
information, methods to detect individual quantitative
trait loci (QTLs) segregating in crosses between inbred
lines, crosses between divergent outbred populations
and within outbred populations have been developed
(Lander and Botstein 1989; Weller et al. 1990; Haley and
Knott 1992; Haley et al. 1994) and have been applied to
animal and plant experimental populations and outbred
populations using field data (e.g. Paterson et al. 1988;
Andersson et al. 1994; Georges et al. 1995).

There is some controversy over the correct threshold
to use when testing for the presence of a single QTL
because multiple correlated tests are performed (Lander
and Botstein 1989; Knott and Haley 1992; Churchill and
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Doerge 1994; Jansen 1994; Rebai et al. 1994). However,
in all studies about the appropriate threshold for the test
statistic so far, the null hypothesis has been that there is
no genetic variance attributable to the segment of chro-
mosome under consideration. It could be argued that we
are often interested in a null hypothesis based upon the
infinitesimal model (or, more realistically, we are inter-
ested in testing the hypothesis that there is one, or a
limited number, of QTLs of relatively large effect in a
region versus the hypothesis that there are many of
small effect). Since the strains for the experimental cross-
es on which QTL mapping studies are based are usually
chosen because of their genetic difference, a priori under
an infinitesimal model we might expect each chromo-
somal segment to explain a part of the strain difference
in proportion to its size. Alternatively, we expect each
chromosomal region to explain a proportion of the
genetic variance in the F, or backcross population or in
any outbred population under study. We are then faced
with the dilemma of distinguishing this model from one
in which only one or a few QTLs are segregating.

The aim of this study is (1) to present infinitesimal
models which explain differences between two inbred
lines, (2) to show that these genetic models give results in
terms of average test statistics when testing no QTL
versus a single QTL’ which are similar to results from
populations with segregating single QTLs of large ef-
fects and (3) to explore alternative analytical models
which address this problem of inference and propose an
alternative null hypothesis for the detection of QTLs.

Methods

Genetic models

For illustration purposes, we only consider an F, population which
originates from two inbred lines. Extension to other populations
derived from an inbred line cross, e.g. backcross populations, is
straightforward. We also assume throughout that there is no recom-
binational interference, so the mapping function of Haldane (1919)
applies, and that all genetic variance is additive.

Single-Q TLmodel

In the case of a single QTL explaining the genetic variance in the F,
population, the relationship between the line difference (D) and the
variance (var ,(F,)) is simply

var ,(F,) = D?/8 = (1/2)o (1)

with « the allele substitution effect, i.e. one breed has a QTL with
alleles each of effect /2, and another has alleles of effect — /2, so that
D = 20. Wright’s number of effective loci (Wright 1968) for an F,
population

k= D?*/(8var (F,)),
is of course 1 for this model.

Infinitesimal coupling model

Again, consider two inbred lines which differ by D for some quantitat-
ive trait. If we assume that a very large number of QTLs, each with the

same effect and in coupling phase, explain the strain difference, the
relationship between D and the genetic variance in an F, population
can be derived from Hill (1993) and is detailed in the Appendix

var,(Fp) = (1/2)(D/2)°[1 — (/1) 3 i/ @

with k =number of chromosomes, L =the total map length (in
Morgans), r; = the recombination rate between the chromosome ends
for the ith chromosome.

Equation 2 was verified both by analytical methods and by
simulation, and was found to be a very good approximation for the
case of finite loci (even with as few as five evenly spaced loci on a single
chromosome the approximation using an infinite number of loci
works very well). For illustration purposes, we will only consider
results from a single chromosome, i.e. a genome with only one
chromosome, and assume that all the genetic variance and the strain
difference are from loci residing on one chromosome. Then

var,(F,) = (1/2)(D/2)*(1 —r/L)/L 3)

In the present study we use an arbitrary environmental variance
of unity and a chromosome length of 1.0 Morgan (L=10).
The heritability, h?, is defined as the ratio of the genetic variance
and the total phenotypic variance in the F, population, h*=
var,(F,)/(var (F,) + 1.0). For a chromosome of 100 cM, r=(1/2)
(1 —e~%)=0.43,and

D =[812/{(1— k) (1 —n)}1"? =375 [h3/(1 — k)] @

Under this model, the equilibrium genetic variance, i.e. the genetic
variance after many generations of random mating, is zero, because
all variance is caused by covariances among pairs of loci, and the
genic variance (the sum of the variances at individual loci) goes to zero
for an infinite number of loci. Individual locus effects are of order (O)
O(1/n),and the variance is O(1/n?). The effective number of loci for the
single chromosome is

k=D?/[8(1/2)(D/2)*(1 — r/L)/L] = L/(1 —r/L)

Infinitesimal dispersion model

We now consider a genetic model which gives the same average
heritability in the F, as before, but without an initial linkage disequi-
librium in the inbred lines. At each locus for each inbred line, an effect
of either « or —a was simulated with equal probability, so that alleles
at loci had effects either (¢/2,0/2) or (—o/2, —«/2) for either inbred
line. An interpretation of this model is that inbred lines have evolved
by random drift from a common ancestor for which all loci were in
linkage equilibrium, i.e. inbreeding without selection, and that we
take a random sample of two such inbred lines. For n loci, paramters
for the line difference and the genetic variance in the F, are now
related to individual locus effects as

E(D)=0
var(D) = 2no?
E[var,(F,)] = no?/4 ®)

This model was termed the dispersion model. For a single locus
(n=1), the probability that the inbred lines are fixed for the same
alleles is 1/2, so that the expected variance is 1/2(0 + «?/2) = o*/4
under this model. To obtain a finite variance in the F, population,
individual locus effects are of order O(1/n'/?). The equilibrium genetic
variance under this model is the same as the variance in the F,
population. The effective number of loci is

k= E(D?)/[8var ((F,)] = var(D)/[8no?/4] = 1



This model is similar to the model of Robertson (1977), except for
the assumption of inbred populations. Robertson (1977) sampled
alleles at a particular locus independently of each other.

Infinitesimal repulsion model

In the previous model the line difference is on average zero, but its
variance is not, so that by chance one line (or chromosome) may have
a larger effect than the other. The same applies to the genetic
variance:this variance varies depending on which inbred lines are
sampled out of the hypothetical pool of many inbred lines. To ensure
that the line difference is always zero and the genetic variance is
constant, we define a model in which + and — alleles alternate and in
which the lines are fixed for alternative alleles.

So, for n loci, the first inbred line is

(+0/2, +0/2),(— /2, —0/2),(+2/2, +/2), (— /2, —0/2),etc.,
and the second inbred line is
(—o/2, —/2), (+0/2, +/2),(— /2, —0/2),(+ /2, +0/2), etc.

The variance in the F, population is

var (F)) =(1/2)2 Y ¥ (= 1) (= 1y(1 —2r,)

i=1j=1

with r;; the recombination fraction between loci i and j. It can be
shown that if n becomes large and is even, that

D=0,
var(D) =0,
var (F,) = (1/2)e* [r + L], (6)

with L the length of the chromosome and r the recombination rate
between the chromosome ends. This model is not strictly an infinitesi-
mal model because the effects of individual loci do not become
infinitesimal when n tends to infinity (« is not a function of n, so that a
particular F, variance can be obtained with any number of loci).
The above infinitesimal genetic models differ from the ‘standard’
Fisher-Bulmer infinitesimal model used in plant and animal breeding
(e.g. Bulmer 1980) because of linkage and initial linkage disequilib-
rium. Our many models represent three extremes if we consider the
correlation between effects of loci which are very close together:in the
coupling model, this correlation tends to + 1, in the dispersion model
the correlation tends to 0 and in the repulsion model it tends to — 1.

Simulation

Chromosomes of 100 ¢cM with 11 evenly spaced fully informative
markers (including markers at the ends) were simulated for an F,
population, with individual loci at 1-cM intervals. Hence, 101 linked
loci were simulated. Depending on the genetic model (single QTL,
many QTLs in coupling phase, many QTLs in dispersion phase,
repulsion model), individual locus additive effects were determined so
as to obtain heritabilities in the F, of 0%, 1%, 2%, 5% and 10% for a
single chromosome. For the single-QTL model, using Eq. 1, these
heritabilities correspond to D =0, 0.28, 0.40, 0.65 and 0.94, with D in
units of environmental standard deviations. For the coupling model,
using Eq. 3, these heritabilities correspond to D = 0,0.38,0.54,0.86
and 1.25, with D in units of environmental standard deviations. No
dominance or epistatic effects were simulated. For the single gene
model data were generated with a single QTL at 55 cM from the start
of the chromosome.

Models for analysis

We used several models to analyse the data. Test statistics were
calculated using a likelihood ratio test, assuming that residuals are
normally distributed, i.e.
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test statistic= N log(Residual SS reduced model/Residual SS full
model),

with N the number of observations (Haley and Knott 1992). The full
model contains both a mean effect and QTL effects (an additive effect
in the backcross population, and both an additive and dominance
effect in F, populations), and in the reduced model only an overall
mean is fitted. It had been shown by Knott and Haley (1992) that
using either a likelihood ratio test or an F-test gives nearly identical
results. Under the null hypothesis of no QTL on a chromosome, the
test statistic follows a multiple of a % distribution (Haley and Knott
1992; Rebai et al. 1994). If we were to test at a specific location on the
chromosome rather than searching along the chromosome for the
best model fit, the test statistic would be distributed (asymptotically)
asa y*> wih 1 or 2 degrees of freedom, depending on whether only an
additive effect was fitted or both an additive and a dominance effect
(Haley and Knott 1992).

Regression interval mapping

Data were analysed with the regression method of Haley and Knott
(1992), which fits a putative QTL at different places along the
chromosome (e.g. at 1-cM intervals) and calcul ates the test statistic at
each point. The position giving the largest test statistic is the most
likely position for a QTL. Apart from an overall mean, either an
additive effect, or both an additive and a dominance effect were fitted
in the regression. Only a single putative QTL was postulated in the
model fitted.

Fitting selected markers as cofactors

For interval mapping markers were fitted in the model as cofactors
following Jansen (1993, 1994) and Zeng (1993, 1994). Cofactors will
absorb some of the variance due to additional (linked) QTL when
mapping in a particular interval, and this model was fitted so asto try
to distinguish between the single-QTL and the multiple-QTL models.
By means of backward selection (e.g. Draper and Smith 1966),
individual markers were selected to be included in the model as
cofactors depending on their F-ratio. Each marker has three
genotypic classes, hence two additional effects are fitted for each
marker. Probabilities [p(F )], corresponding to an F-ratio with (2,
number of F, individuals minus 2) degrees of freedom, used to select
cofactors in alternative models were 1,0.20,0.10,0.05 or 0.01. A
probability of 1 corresponds to the case of fitting all markers as
cofactors, which was suggested by Zeng (1994). After markers had
been selected as cofactors, the search was for a single QTL on the
chromosome while fitting the selected markers as cofactors. Markers
flanking the interval under consideration were not fitted, even if they
had been selected (or pre-selected, in the case of ‘selecting’ all
markers), because they would absorb some or all of the variance
associated with the putative QTL (Jansen 1993; Zeng 1993).

Alternative statistical tests

Before trying to map QTLs on chromosomes or chromosomal re-
gions, we may wish to apply some statistical tests to find out whether
there is evidence of genetic variance which is associated with a
chromosome, and if there is, whether the findings can be explained by
an infinitesimal model.

Chromosomal test
The first test of whether there is genetic variance associated with the
chromosome is performed by fitting all markers in the model of

analysis and testing for significance using an F-test or a likelihood
ratio test. Hence, we test for the joint marker effects.

Coupling test

The second test is whether any genetic variance associated with the
chromosome is consistent with the infinitesimal coupling model. For
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this latter test, if we assume the additive coupling model and perform
multiple regression of phenotypes on all (evenly spaced) markers on a
chromosome, we expect a priori that the relative marker estimates, up
to a constant of proportionality, are 1/2 for the end markers, and 1 for
the other markers (Visscher 1996). Hence, a priori weights for markers
are proportional to the length of chromosome segment that they
mark. If we use the results from Visscher (1996), the constant of
proportionality can be derived easily,

y=D[2r/(1 = 2n]*/L 7]
SO
D =7[(1 —2n)/(2r)]*(L) (8]

with r the recombination rate between the markers flanking the
(evenly spaced) intervals. This suggests the test for the adequacy of an
infinitesimal coupling model by comparison of the full regression
model, in which all markers are fitted (with m + I degrees of freedom,
where m is the number of markers), to the model

y=pu+y[(1/2)x; +x,+... +(1/2)x,] +e,

with 2 degrees of freedom. x; is the additive effect of marker i (for an
additive model, x, was — 1 if both marker alleles originated from line
1, + 1 if they orginated from line 2 and O for the heterozygotes). The
line difference can be estimated using Eq. 8. The resulting likelihood
ratio testhas (m + 1) — 2 = m — I degrees of freedom. Note that in this
case we fit only a single degree of freedom per marker, whereas
previously (when fitting markers as cofactors) we fitted 2 degrees of
freedom per marker. This was done because we wish to test an
additive (coupling) model and were not interested in possible domi-
nance effects for these analyses, although in practice a dominance
effect could be included in analyses of F, data.

Single-Q TL test

In some cases we may be interested in testing whether genetic
variance explained by a single chromosome is caused by a single
QTL, or by two or more QTLs. For an additive model, this suggests
testing a model in which a single QTL is fitted on the chromosome
versus a model in which all markers are fitted as fixed effects. If the
null hypothesis (a single QTL) is true, the test should be close to a
chi-square with (m — 2) degrees of freedom (m degrees of freedom in
the full model for fitting all markers and 2 degrees of freedom in the
reduced model for fitting a position effect and an additive effect).
Again, extension to the case where we are interested in dominance
would be straightforward.

Results

Results for the four genetic models are given in Tables
1-4. These results are summarized in terms of the mean
likelihood ratio test statistic over all chromosomal posi-
tions over replicates, the mean over replicates of the
maximum test statistic on each chromosome and the
threshold over which the maximum test statistics were
observed in the top 5% of replicates, i.e. the 95th percen-
tile of the maximum test statistic. These values can be
compared directly to significant thresholds based on
likelihood ratio tests when testing ‘no QTL versus a
single QTL’ (e.g. Lander and Botstein 1989; Rebai et al.
1994). Standard errors on the average maximum test
statistic ranged from 0.2 to 0.8. Results from the coup-
ling model (Table 2) were similar to those of the single
QTL model for the same heritability in the F, (Table 1),

Heritability = 0.00

Test statistic

T v T T T
0 20 40 60 80
Position (cM)

100

Fig. 1 Mean test statistic (solid line) per 1-cM intervals averaged over
1000 replicates and the test statistic for a random replicate (dashed
line) when there are no QTLs segregating in the F, population

Single QTL at 55 cM
Heritability = 0.01

12

Test statistic

. . . . .
0 20 40 60 80
Paosition (cM)

Fig.2 Mean test statistic (solid line) per 1-cM intervals averaged over
1000 replicates and the test statistic for a random replicate (dashed
line) for a single QTL at 55 ¢cM from the start of a 100-cM chromo-
some. The effect of the QTL corresponds to a heritability of 0.01 in the
F, population

implying that it may be difficult to distinguish between a
single QTL or a very large number of QTLs linked in
coupling spread along the chromosome, although we
did not test how well those models fitted at this stage.
Average and average maximum test statistics for the
dispersion model were slightly lower, but not by much
(Table 3). The smallest inflation of the test statistic,
relative to the case of no genetic variance (Table 1) was
from the repulsion model (Table 4). For realistic heri-



Heritability = 0.01
Coupling model
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Fig. 3 Mean test statistic(solid line) per 1-cM intervals averaged over
1000 replicates and the test statistic for a random replicate (dashed
line) when the heritability in the F, population is 0.01 based on the
coupling model

tabilities per chromosome in livestock species (1 or 2%),
the average maximum test statistics are similar for the
first three models. Hence, for such cases it is the variance
in the F, population which largely determines the aver-
age maximum test statistics, rather than the individual
locus effects. Figure 1 shows the test statistic at each
position along the chromosome for the case of no seg-
regating QTLs, both for a single replicate and the
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Fig. 4 Mean test statistic (solid line) per 1-cM intervals averaged over
1000 replicates and the test statistic for a random replicate (dashed
line) when the heritability in the F, population is 0.05 based on the
coupling model

average across replicates. The single replicate was the
first replicate in a simulation run and was thus randomly
chosen. As expected, the average test statistic is approxi-
mately 1, and deviations from the average for the single
replicate is due to the sampling variation. Figure 2
shows the test statistic plotted against location on the
chromosome for the case of a single QTL at 55 cM,
which explains 1% of the F, variance. The average peak

Table 1 Test statistic summary from 100-cM chromosome for 1000 replicate F, populations of 1000 individuals. The marker map used has 11
equally spaced fully informative markers, and a single QTL at 55 cM explained the genetic variance

Fit additive effect only
h*(%) in F, population

Fit additive and dominance effect
h?(%) in F, population

0 1 2 5 10

T 1.0 54 10.2 23.7 47.6
T, 3.0 11.6 21.1 48.5 96.7
< os 7.3 228 37.1 71.9 129.6

0 1 2 5 10
20 6.4 11.0 24.6 48.1

53 13.1 21.6 493 98.0
10.5 24.9 37.1 73.4 129.6

2 Mean test statistic of all positions along the chromosome
® Maximum test statistic per chromosome

Table 2 Test statistic summary for data from a coupling model.
Simulations were of a 100-cM chromosome for 1000 replicate F,
populations of 1000 individuals. The marker map used has 11 equally

©95th percentile of the maximum test statistic

spaced fully informative markers, and 101 loci of equal effect coupling
phase explained the heritability

Fit additive effect only
h*(%) in F, population

1 2 5 10

T 7.1 12.9 317 64.1
(i 127 212 459 87.1
< s 24.2 35.9 67.4 116.2

Fit additive and dominance effect
h*(%) in F, population

1 2 5 10

8.1 14.1 324 64.6
14.2 22.5 46.9 88.5
25.8 373 68.7 118.0

2 Mean test statistic of all positions along the chromosome
®Maximum test statistic per chromosome

©95th percentile of the maximum test statistic
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Table 3 Test statistic summary for data from a dispersion model. Simulations were of a 100-cM chromosome for 1000 replicate F, populations
of 1000 individuals. The marker map used has 11 equally spaced fully informative markers, and 101 loci were in dispersion

Fit additive effect only
h*(%) in F, population

1 2 5 10

T 4.9 8.5 19.7 38.3
T 10.4 17.0 37.5 72.9
< 283 49.3 1122 213.6

0.95

Fit additive and dominance effect
h?(%) in F, population

1 2 5 10

5.7 9.8 22.2 41.5
11.8 18.7 41.2 774
293 52.2 122.8 2373

* Mean test statistic of all positions along the chromosome
b Maximum test statistic per chromosome

¢95th percentile of the maximum test statistic

Table 4 Test statistic summary from a repulsion model. Simulations were of a 100-cM chromosome for 1000 replicate ¥, populations of 1000
individuals. The marker map used has 11 equally spaced fully informative markers, and 101 loci were in repulsion

Fit additive effect only
h*(%) in F, population

1 2 5 10

T 1.4 1.8 3.1 5.1
. 4.8 6.4 11.2 19.0
s 10.6 13.9 20.7 31.6

0.95

Fit additive and dominance effect
h?(%) in F, population

1 2 5 10
2.5 3.0 43 6.5
6.8 8.3 12.7 20.5
134 15.8 22.3 33.8

* Mean test statistic of all positions along the chromosome
® Maximum test statistic per chromosome

is at 55 c¢cM, although a single replicate can vary con-
siderably from the average curve. Figures 3 and 4 show
the test statistic plotted against the chromosomes for
data generated with heritabilities of 1 and 5%, respect-
ively, under the coupling model and analysed fitting a
single QTL with a additive effect. Clearly, the test
statistics are inflated by the presence of many QTLs
each with small effects. If the figures were produced by
real data, and the maximum test statistic compared with
a threshold derived under the assumption that no QTLs
were segregating (e.g. using 7.3 as the 5% threshold for
the situation with no variance attributable to the chro-
mosome, as given in Table 1) evidence for single QTLs
(of large effect) would have been reported for Figs. 3
and 4.

Fitting all markers on the chromosome as cofactors
in the model of analysis reduces the test statistic dra-
matically for the coupling model. For example, the 95th
percentile for h? = 0.05 decreased from 71.9 (Table 2) to
12.5 (Table 5), which is not much larger than the 95th
percentile for h? = 0.0 of 9.5. For the dispersion model
the values for the 95th percentile with h* = 0.05 were
112.2 without cofactors (Table 3) and 22.7 fitting all
markers as cofactors (Table 5). However, the average
maximum test statistic and the 95th percentile values for
the single QTL model were also greatly reduced when
fitting all additional markers as cofactors, with the
resulting values being similar to those from the disper-
sion model with the same F, heritability (Table 6).
Hence, fitting all markers as cofactors reduces the power
when only a single QTL is segregating. For example, for
a single QTL explaining 5% of the variance in the F,,
the 95th percentile of the maximum test statistic was

©95th percentile of the maximum test statistic

reduced from 37.1 (Table 1) to 24.1 (Table 6). Selecting
cofactors using F-thresholds from multiple regression of
phenotypes on markers generally resulted in only a few
markers being selected. For example, when an F-thresh-
old corresponding to a probability of 0.20 was used, the
largest probability used for selection (apart from select-
ing all markers, which corresponds to a probability of 1),
2-3.8 markers were selected for the coupling and disper-
sion model.

Testing for genetic variance per chromosome (‘chro-
mosomal test’) and for the infinitesimal coupling genetic
(‘coupling test’) model was performed for the single
QTL, the coupling and the dispersion models, and the
results are presented in Table 7. The mean test statistic
and its 95th percentile when testing for variances asso-
ciated with the chromosome, i.e. chromosomal test,
approximately followed a chi-squared distribution with
m = 11 degrees of freedom when the null hypothesis was
true (mean of 11.2 and 95th percentile of 20.3). When
there was genetic variance associated with the chromo-
some, mean test statistics were much larger, and for a
particular h?, similar for all models. For example, mean
test statistics for h? = 0.02 were 29.0, 31.2 and 29.1 for
the single QTL, coupling, and dispersion models,
respectively.

For the coupling model, the test statistic for all
heritabilities (i.e. testing for an infinitesimal coupling
model) seemed to behave like the expected chi-squared
distribution with 10 degrees of freedom, and the esti-
mates of the breed differences were unbiased. For the
single-QTL model, test statistics were larger, so that the
hypothesis of a large number of QTLs explaining the
chromosomal variance was likely to be rejected. If the
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Table 5 Test statistic when fitting selected markers as cofactors in the analysis of data from coupling and dispersion models. Simulations were
of a 100-cM chromosome for 1000 replicate F, populations of 1000 individuals

Coupling Dispersion
hZ
p(F) 0.00 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10
1.0 T 1.0 1.1 1.3 1.6 24 1.4 1.7 2.7 4.5
Tax 4.6 5.2 5.8 7.0 9.2 6.1 7.5 11.6 19.9
Toos 9.5 10.1 11.1 12.5 15.8 12.2 15.6 22.7 49.6
Cof.* 11 11 11 11 11 11 11 11 1
0.20 T 1.1 24 33 52 7.8 24 34 6.0 9.6
Tax 4.4 10.2 13.2 18.5 25.2 9.6 14.0 242 40.1
To o5 10.6 19.4 25.7 34.2 49.4 21.0 319 63.1 95.6
Cof* 1.5 2.0 2.4 2.8 34 2.2 2.5 32 3.8
0.10 T 1.0 2.8 4.0 6.5 9.5 2.5 3.8 6.8 11.0
Trax 3.7 115 15.8 232 30.2 10.1 154 27.0 445
Toos 10.0 21.6 28.5 43.0 584 233 354 712 114.9
Cof? 0.6 1.3 1.7 2.2 2.9 1.3 1.7 24 3.0
0.05 T 1.0 3.2 4.6 7.5 11.0 2.7 4.1 7.3 12.0
Tax 34 12.2 17.8 26.6 34.6 10.3 16.1 29.1 479
Toos 9.5 23.0 309 50.8 64.9 25.8 40.5 749 127.8
Cof? 0.3 1.0 1.3 1.9 2.5 0.9 1.2 19 2.5
0.01 T 1.0 4.1 5.6 9.4 13.7 3.0 4.5 83 13.6
Trmax 3.1 12.6 20.0 33.8 44.0 10.3 17.2 325 53.2
To o5 7.8 23.8 329 61.1 81.8 28.1 43.8 84.8 140.7
Cof.? 0.0 0.6 1.0 1.5 2.1 0.4 0.7 13 19

2 Average number of cofactors fitted in the model

Table 6 Test statistic when fitting selected markers as cofactors in the analysis of data from the single QTL genetic model. Simulations were of
a 100-cM chromosome for 1000 replicate F, populations of 1000 individuals

h? Single Q TL model
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0.00

1.0

4.6
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44
10.6
1.5

1.0
3.7
10.0
0.6

1.0
34
9.5
0.3

0.01

1.3

59
12.1
11

2.5
11.1
22.5

2.0

2.8
12.1
235

1.3

3.0
12.2
235

1.0

3.6
12.2
23.6

0.5

0.02 0.05 0.10
1.6 24 3.8
7.5 12.8 23.2
15.6 24.1 40.2
11 11 11
3.5 6.4 10.2
16.3 34.8 69.2
321 64.7 117.9
22 23 2.8
4.0 7.8 12.8
18.8 40.5 79.2
343 69.8 124.4
1.4 1.6 2.0
43 8.6 14.6
19.7 43.7 84.7
34.7 70.5 125.9
1.2 12 1.6
4.7 9.3 17.6
20.3 47.0 92.6
354 71.0 127.8
0.9 1.0 1.1

* Average number of cofactors fitted in the model

effect of a single QTL is small (say, h* < 0.01), the power
of a test which aims to distinguish between a single QTL
and many linked QTLs is likely to be small. For
example, the mean coupling test statistic and its 95th

percentile for h* =0.01 and data from a single-QTL
model were 12.4 and 22.4, not too different from the
values under the genetic model of a large number of
QTLs in coupling (10.2 and 18.5). The estimate of the
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Table 7 Summary of test statistics from the chromosomal test (TC) and the coupling test (TT). Simulations were of a 100-cM chromosome for
1000 replicate F, populations of 1000 individuals. The marker map used has 11 equally spaced fully informative markers

Model h?(%) in F, population
0 1 2 5 10
Single QTL TC? 11.2 20.5 29.0 56.2 105.1
TC o5 20.3 34.0 459 81.7 138.8
TI* 101 12.4 142 20.7 32.8
TTp o5 189 224 24.6 35.4 513
D¢ 0.00 0.28 0.40 0.65 0.94
D¢ 0.00 0.32 0.45 0.72 1.06
Coupling TC 21.3 31.2 61.6 115.6
TC) o5 35.7 48.8 87.1 149.7
TI* 10.2 10.2 10.1 10.3
TI} o 18.5 18.8 18.9 19.4
D¢ 0.38 0.54 0.86 125
D¢ 0.38 0.54 0.87 1.27
Dispersion TC? 203 29.1 57.6 106.2
TC} o5 42.7 63.0 140.0 268.0
I 13.6 17.5 29.1 49.8
TI} o 249 35.5 66.1 117.7
D* —0.01 —0.02 -0.01 —0.05
D¢ —0.01 —0.02 —0.02 —0.04

* Average test statistic average breed difference from simulation (for dispersion model)
295th percentile of the test statistic 4 Estimate of the breed difference assuming the infinitesimal coupling
°True breed difference (for single QTL and coupling model) or  model

Table 8 Summary of test statistics from the single QTL test. Simulations were of a 100-cM chromosome for 1000 replicate F, populations of
1000 individuals. The marker map used has 11 equally spaced fully informative markers

Model h?(%) in F, population
0 1 2 5 10
Single QTL T 8.2 8.4 8.5 8.8 9.0
T5 o5 159 16.4 16.6 17.1 16.8
Coupling T 8.4 103 16.3 28.7
TS os 162 18.4 26.8 453
Dispersion T 10.0 123 19.7 319
Thos 202 25.2 427 77.2

* Average test statistic
95th percentile of the test statistic

line difference was biased upwards for the single-QTL
genetic model when assuming an infinitesimal model.
Mean and 95th percentile for the dispersion model did
not follow a chi-squared distribution with 10 degrees of
freedom. This is because by chance chromosomal inter-
vals may differ between the lines because of a cluster of
QTLs, with the effects being positive in some intervals
and negative in others. Hence, by chance we effectively
create a multiple-QTL genetic model, so that the hy-
pothesis of a large number of linked QTL in coupling
phase should be rejected.

The null hypothesis of a single additive QTL explain-
ing the genetic variance was tested for a single chromo-
some for the single QTL model and the coupling and
dispersion genetic models. Results are in Table 8. For
the single QTL model the mean test statistic and its 95th
percentile look very similar to expected values from a

chi-squared distribution with 11 — 2 = 9 degrees of free-
dom (Table 8). For small heritabilities, results tend to-
wards a chi-squared with 8 degrees of freedom. For
heritabilities of 1% and 2%, it still seems difficult to
distinguish between the different genetic models. How-
ever, for larger heritabilities, it is clearly possible to
separate the single QTL from the coupling and disper-
sion models. For example, for h? = 0.05, the mean test
statistic for the single-QTL model is 8.8, whereas the
mean values for the coupling and dispersion models are
26.8 and 42.7, respectively.

Discussion

The results presented here demonstrate the difficulty in
using interval mapping approaches to distinguish be-



tween models with a single QTL of relatively large effect
and those with multiple QTLs of small effect. Different
genetic models which explained the same amount of
variance in an F, population derived from inbred lines
were compared when analysing data of 1000 individuals.
The genetic variance was either explained by a single QTL,
by many linked QTLs in coupling phase, by many QTLs
in linkage equilibrium in the inbred lines or by a model
for which inbred lines were fixed for alternative alleles
and within a line adjacent loci had opposite effects.

We do not claim that any of these many-loci models
truly represent strain differences in practice. However,
the genetic nature of strain differences in terms of the
distribution and frequencies of QTLs is not known, and
these models were selected to cover the range of possibil-
1ties.

It was shown that for heritabilities in the F, of 1% or
2%, the average test statistics were similar for widely
different genetic models if we only fit a single QTL in the
analysis. For a single chromosome, thresholds pertain-
ing to a Type-I error of 5% for a QTL of additive effect
were in the range of 11 to 36 for the coupling and
repulsion infinitesimal models (Tables 2 and 4). Here we
use type-I error in the sense that a single QTL model is
not rejected when the data were simulated under alter-
native genetic models. These log-likelihood thresholds
correspond to LOD scores of 2.4-7.8, well above the
LOD threshold used in practice for a single chromo-
some (Lander and Botstein 1989; Paterson et al. 1988).
Thus, when testing for the presence of a single QTL on a
chromosome, if there was ‘polygenic’ variance asso-
ciated with that chromosome the null hypothesis would
be rejected too frequently. In practice, when data from
crosses between inbred lines are analysed, the relevant
statistical test should perhaps be ‘Is there evidence for
more genetic variance explained by a chromosome seg-
ment than expected by chance (assuming an infinitesi-
mal model), taking the strain difference into account’.
Finding segments of the chromosome which explain
some of the genetic variance, but attributing this to
QTLs of large effects will be inefficient if the aim is to
find ‘the’ QTL itself or to use the finding for marker-
assisted selection. Hence, one should be careful in inter-
preting results from QTL mapping experiments. This
argument is similar to that of Dekkers and Dentine
(1991), who presented an infinitesimal model for outbred
populations (similar to that proposed by Robertson
1977) and showed that chromosome segments of appar-
ent large effects are to be expected under their model.
McMillan and Robertson (1974) have also highlighted
that it is very difficult to distinguish models with single
QTL versus models with many linked QTLs.

The fitting of all cofactors in the model reduced the
test statistic (and Type-I error) substantially for the
multiple-QTL models, but it is known that the power to
detect QTLs will also be reduced (Zeng 1994), and the
reduced test statistics for data simulated under the
single-QTL model found in this study provide further
evidence of this problem. The selection of markers for
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use as cofactors on the basis of their F probabilities
might reduce the problem slightly, in that for a given F,
heritability the difference between the single-QTL and
the coupling model test statistics was increased. This
increase was greatest with cofactors selected on the basis
of F probabilities of around 0.05. However, the differ-
ence between the single-QTL and the coupling models
for the average maximum and 95th percentile threshold
test statistics remained slight except at high heritabili-
ties. Furthermore, the difference between the single-
QTL model and the dispersion model test statistics were
even less affected by fitting cofactors. Thus, cofactors are
of limited use for distinguishing a single QTL per chro-
mosome from multiple linked QTLs, although this does
not devalue their use for distinguishing one QTL from
two or a few linked QTL as advocated by Jansen
(1993,1994) and Zeng (1993, 1994).

For practical purposes, one could set the appropriate
threshold by simulation, assuming that the strain differ-
ence is caused by many genes smeared out along the
chromosomes. Once a QTL of large effect has been
detected, the threshold for testing for remaining QTLs
on other chromosomes should be reduced, taking into
account that a smaller amount of genetic variance has to
be explained by the remaining chromosomes. A simple
iterative scheme which uses the peaks from all chromo-
somes and the initial strain difference (or variance in the
F,) could then be used to distinguish QTLs of large
effects from lots of QTLs of small effects. Note that with
real data, a permutation test (Churchill and Doerge
1994) to set the threshold for the test statistic will not
reduce the problem of single-QTL versus many-QTL
models. A permutation test is performed by repeatedly
shuffling phenotypes among marker genotypes, and for
each sampled dataset mapping QTLs. The empirical
distribution of test statistics from the permuted datasets
may then be used to determine whether the test statistic
obtained from the original unshuffled dataset was sig-
nificant. Permutation may help ameliorate the problem
of non-normality in the distribution of the segregating
generation, but permutation at random with respect to
the marker data is equivalent to assuming that there is
no genetic variance in the segregating generation.

A simple test per chromosome based on the multiple
regression of phenotypes on all the markers on the
chromosome is easily performed and seemed to work
well for testing for the presence of genetic variance
associated with a chromosome (Table 6). Furthermore,
the number of independent tests performed would be
equal to the number of chromosomes, and hence the
overall 5% significance threshold (at least for a single
trait) can be simply derived from the Bonferroni adjust-
ment as approximately 0.05/(the number of chromo-
somes). We have not, however, explored the power of
this test here, and there is further work to be done to
optimize its performance in various situations (e.g.
should all markers or a well-spaced subset be used, and
how is this related to sample size and other design
factors?).
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Table 9 Statistical tests for the dispersion model restricting the
heritability in any F, cross to be within 1% of the average heritability
(hfve). The tests were: (1) single QTL versus no QTL, (2) variance

associated with the chromosome versus no effects on the chromo-

some, (3) single QTL versus other genetic model, (4) infinitesimal
coupling model versus other genetic model. Simulations of a
100-cM chromosome for 1000 replicate F, populations of 1000
individuals

R, Statistical test
(o)
No QTL vs. single Chromosomal Single QTL Infinitesimal
QTL coupling
T Ty o5 T Ty 05 T Ty 05 T Ty 05
1 10.1 20.3 20.0 323 10.6 19.4 14.3 26.2
2 17.6 334 29.8 48.1 13.1 24.6 18.9 35.8
5 38.6 624 58.7 82.9 21.0 40.1 33.6 66.0
10 74.0 108.5 107.7 141.7 34.6 69.9 58.6 114.4

Testing directly for an infinitesimal coupling model
is again easily performed in practice and worked very
well for the simple cases we studied. Again, the signi-
ficance threshold for this test can be derived from the
Bonferroni adjustment. In practice, markers will not
be evenly spaced and fully informative, and the rela-
tive marker effects under an assumed infinitesimal
model will not reduce to 1/2 for markers at the ends
and 1 for all other markers. However, using the results
from Visscher (1996), we can easily derive the relative
weights for the markers using a simple selection index
procedure.

The testing for a single-QTL versus some other gen-
etic model seemed to work well and is recommended for
use in practice. This test was the only one which clearly
separated a single-QTL from the coupling model.
However, the power of this test is only likely to be high
with single QTL of large effect in reasonably sized
populations.

The comparison between the alternative genetic
models was based on a constant heritability in the
F, population. However, for the dispersion model
in particular the heritability varied over replicates
because at every replicate two inbred lines were sampled
from a hypothetical large pool of inbred lines. This
sampling process mimics to some extent current QTL
mapping projects in many plant species because
different research groups look for QTLs in crosses
between different inbred lines. It can be questioned
whether the comparison with the other genetic models
is the most appropriate one because the maximum
test statistic will be correlated with the amount of
genetic variance and the breed difference. For example,
the correlations between the test statistic (QTL vs.
no QTL) and the absolute breed difference and genetic
variance in the F, were 0.74 and 0.79 for an average
heritability of 0.01, and 0.90 and 0.95 for a heritability
of 0.10. To compare the results for the dispersion
model with the other models at a constant heritability,
we performed additional simulation for which pairs
of inbred lines were used only if the heritability in the
F, population was within 1% of the desired average
heritability. For example, for an average heritability
of 0.10, data were selected from those simulated only

for those crosses which resulted in heritabilities between
0.099 and 0.101. On average, approximately 100000
crosses were simulated to obtain 1000 crosses which
satisfied the heritability criterion. For any simulated
data set, several different statistical tests were per-
formed. The results are shown in Table 9 and generally
show little change in the average maximum test statistic
relative to values in Table 7 and 8 for unselected
datasets, although the 95th percentile was reduced sub-
stantially for the test ‘no QTL vs. single QTL’ and the
chromosomal test. For both the single-QTL test and
the infinitesimal coupling test, average maximum
test statistics were slightly increased. For example,
when the heritability in the F, was within 1% of an
average heritability of 5%, the average maximum
test statistic for the single-QTL test and infinitesimal
coupling test were 21.0 and 33.6, respectively (Table 9),
whereas the maximum test statistics for the unres-
tricted case were 19.7 (Table 8) and 29.1 (Table7),
respectively.

For data analyses in practice there is no easy single
solution. We would recommend that the data be ex-
plored by simple tests based only on a multiple re-
gression of observations on markers as a first step before
attempting to map QTLs. The careful interpretation of
results from a chromosomal test, an infinitesimal test
and interval mapping using cofactors (using carefully
chosen, and perhaps simulation derived, significance
thresholds) may help limit the number of false trails that
are followed. However, the distinguishing of single QTL
from linked groups of QTL (as occur in the dispersion
model used in this study) will always be difficult if not
impossible, without resort to more markers and more
meioses.

Appendix

The infinitesimal coupling mode]

Model for many linked Q TL

The aim of this Appendix is to present a genetic model of many linked

loci which explains breed differences and genetic varainces in I, and
backcross populations derived from inbred lines.



Suppose we have n equally spaced loci on a chromosome (or
interval) of length L. If alternative alleles are fixed in the two breeds
for all loci, and all loci have equal additive effects (allele substitution
effect o), then

D = trait difference for parental breeds = 2 no, or
o= D/(2n)

We first consider a backcross population which represents the
simplest case. For backcross (BC) generation ¢, the total additive
genetic variance is

var(BC)) = Z Z [(1/29(1 = ry)o’] — n*(1/4%
=0<2n2[(1/2’) > xa —rij)‘(l/n)(l/n)*(l/‘l’)J [A1]

D2 n n
) <‘4’> [(1/ 2) L X (A=ryf (m(ifm — (1/4'>}

with r;; the recombination fraction between loci i and j. The term
inside the square brackets is similar to the equations of Stam and
Zeven (1981) and Hill (1993) for the variance of the proportion of the
genome from the recurrent population. Essentially, the genetic vari-
ance under the assumed model is just a scaled version of the variance
of the proportion of the genome from one of theinbred lines. For large
n, and assuming Haldane’s (1919) mapping function without interfer-
ence, Al can be approximated by (see also Hill 1993)

t

D? . A
varA(BCt):7[1/(2L2)(1/4‘) Y <i>1/(i2)(2iL—] +e“2"‘)J - [A2]

i=1

with L the length of the chrosomosome (block) in Morgans. For the
first BC generation, A2 may be written as

var,(BC,) = (1/4)(D*/4)(1 —r,/L)/L

with r,, the recombination fraction between the chromosome ends.
For an F, population with random mating, the additive variance
is (using results from Kempthorne 1957)

var (F) = (1/2)e? (1 — 2r,)(1 —r, )~ 2 /n?
For an F, population this reduces to
var,(F,) =1/20*E%(1 — 2r;;)/n*
=(1/2)(D/2)*(1 —r,/L)/L=2var ,(BC,)

Extension to multiple chromosomes is straightforward (see Hill
1993). for v chromosome, the additive genetic variance in the F,
population is

var ,(F,) = (1/2)(D/2)* [1 -(/L) Y h}/L

i=1

with r; the recombination fraction between the chromosome ends for
chromosome j, and L the total map length.

With the ‘standard’ infinitesimal model (e.g. Bulmer 1980) the
genotypic value at any locus is of order (O) 1/n'/?, and the variance at
each locus is O(1/n). With a very large number of linked loci on a
chromosome (block), the variance in backcross populations is of
O(1/n?),s0 values at individual loci should be of order (1/n). However,
we cannot have both finite genic and total variance for infinite n (the
genic variance goes to zero for large n with finite genetic variance).
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