GENETICS AND BREEDING

Power of Likelihood Ratio Tests for Heterogeneity of Intraclass
Correlation and Variance in Balanced Half-Sib Designs

ABSTRACT

Statistical power of likelihood ratio
tests was investigated for detection of
heterogeneous variances and intraclass
correlation in balanced half-sib designs.
Powers of likelihood ratio tests were ob-
tained from simulations. For half-sib de-
signs of sires nested within herds, true
intraclass correlations and phenotypic
variances, and estimates thereof, were
repeatedly sampled, and likelihood ratio
tests were conducted. The power for de-
tecting heterogeneity of intraclass corre-
lations was low, but the power for de-
tecting heterogeneous phenotypic var-
iances was nearly always 100%. For
balanced cross-classified designs, sires
had progeny in all herds, and data were
simulated by assuming that heterogeneity
of between- and within-sire components

" was the result of a herd-dependent scale
effect. Using this model, the power to
detect heterogeneous between-sire com-
ponents was substantially higher than the
corresponding power to detect heter-
ogeneous intraclass correlations in the
nested design. It seems unlikely that
reliable inference about heterogeneity of
genetic variances or heritabilities be-
tween individual herds from daily cattle
field data can be made.

(Key words: statistical power, likelihood
ratio test, heterogeneity of variance)

Abbreviation key: HYS = herd-year-season,
JAM = individual animal model, ICC = in-
traclass correlation, LR = likelihood ratio,
MCPB = mean cross product for sires between
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strata, MLE = maximum likelihood estimate,
MSB = mean square between sires within a
stratum, MSW = mean square within sires
within a stratum.

INTRODUCTION

In animal breeding, BLUP [e.g., Henderson
{8)] has become the method of choice for-
predicting breeding values from mixed lkinear
models. Theoretically, (co)variances of random
effects included in the mixed model should be
known without error, but, in practice, estimates
are used. It has become standard practice to
estimate variances using REML [Patterson and
Thompson (15)]. The most desirable (linear)
model both for prediction of breeding values
and estimation of genetic parameters appears
to be an individual animal model (IAM), in
which relationships between all animals in the
data and pedigree are taken into account [e.g.,
(19, 25) for applications in dairy cattle]. .

One assumption usually made by users of
BLUP is homogeneity of variances across lev-
els of fixed (and random) effects. In dairy
cattle, however, there is abundant evidence
from recent analyses that this assumption is
not valid (2, 3, 4, 13, 14, and 18). Typically
for studies investigating heterogeneity of vari-
ance, herds or herd-year-seasons (HYS) are
grouped according to their mean production or
phenotypic variance, and parameters are esti-
mated within and between groups using a sire
model. Unfortunately, using an JAM for esti-
mating parameters is computationally demand-
ing, and relatively small sample sizes are nec-
essarily used to estimate population para-
meters. One suggestion for dairy cattle
parameter estimation is to use individual herd
data as samples (20, 22, 23, 24) and to com-
bine several individual herd estimates into a
population estimate. Using individual herd
data separately provides a framework to inves-
tigate heterogeneity of variance between herds
(23, 24). If results about variance heterogeneity
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from a sample of individual herd estimates can
be extrapolated to the total population (of
herds), then, for any trait and parameterization
in heritability and phenotypic variance, one of
the following conclusions can be drawn from
one such sample: 1) both heritabilities and
phenotypic variances are homogeneous across
herds; 2) heritabilities are homogeneous, and
phenotypic variances are heterogeneous across
herds; 3) heritabilities are heterogeneous and
phenotypic variances are homogeneous across
herds; and 4) both heritabilities and phenotypic
variances are heterogeneous across herds.

The (arbitrary) parameterization in heritabil-
ities and phenotypic variances, instead of
parameterization in additive genetic and envi-
ronmental variances, was chosen to investigate
previously reported conclusions about heter-
ogeneity of variance between herds (24),
which were in terms of the same parameteriza-
tion. Furthermore, results from estimating vari-
ances in dairy cattle are most commonly re-
ported in terms of heritability and phenoiypic
variances. The implications of these four sce-
narios for a (national) BLUP evaluation, if the
appropriate covariance structure of the data is
used, vary substantially. Scenarios 2 to 4 imply
that estimates for individual herds should be
obtained regularly, which is tedious and may
be subject to sampling error. Furthermore, in
addition to (sampling) problems associated
with estimation of the relevant parameters,
there may be computational problems with a
large-scale implementation.

Inference about the (co)variance structure of
observations across herds or HYS, therefore,
has implications for the choice of the desirable
model to be used. What significance test
should be used in selecting the most likely
scenario, and how powerful are such tests for
small sample sizes? Because the estimation
procedure usually is REML, it seems natural to
use a likelihood ratio (LR) test, which has
desirable asymptotic properties (1).

‘The aim of this study was to investigate the
power of an LR test in detecting heterogencous
variances for individual groups (herds).

An LR test was used to test whether hesita-
bility differed between herds while allowing
for heterogeneous individual herd phenotypic
variances. To predict the power of an LR test
for a given design, the distribution of the test
statistic was required. Unfortimately, the distri-
bution of the LR from IAM-REML variance
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component estimation is not known. One sug-
gestion was to investigate the detection of
differences in between- and within-sire vari-
ances in different herds using balanced half-sib
designs, because the distribution of the test
statistic from such a design is known when
ANOVA is used to estimate variances. There-
fore, ANOVA theory was used in the predic-
tion of the power. Both nested and cross-
classified half-sib designs were used to con-
trast the statistical power in detecting heter-
ogeneous variances across individual herds for
both designs.

MATERIALS AND METHODS

Batanced Nested Half-Sib Designs

Suppose that there are observations on
progeny of sires in different herds (or strata)
and that an LR test is used to determine
whether a particular set of herds differs in
intraclass correlation (ICC), phenotypic vari-
ance, or both. The ICC is the ratio of between-
sire variance to the sum of between- and
within-sire variance and is usually assumed to
be one-quarter of the heritability. It was as-
sumed that sires were nested within herds. Let
there be sn observations in each herd from s
sites with n progeny each. Then, assuming
normality, the log-likelihocod of error contrasts
(15) for data from herd i [see, for example,
(21}] is, apart from a constant,

-3 (st — Dlog(aZy) + (s — Dlog

L =
(G2, + noZ) + Wy(a2)
+ By(oZ; + nogp)
with
szi = within-sire variance in herd i,
0—%_ = between-sire variance in herd i,
1
W, = within-sire sum of squares for herd i,
and
B, = between-sire sum of squares for herd i.

1

Reparameterization in t;, the ICC for herd i,
and 0'i2, the phenotypic variance in herd i,
gives
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...% {stn — Dlog1 - tp)

+ (s — Dlog(t + (a — Dt

+ WJ(eH(1 - 1)) + By(6X(1 + (n - 1)ty)
+ (sn — l)log(oiz)}.

L =

For data from k herds, assuming that sires
are nested within herds, the log-likelihood is

L, = I [1]

and the (residual) maximum likelihood is ob-
tained by substituting the ANOVA estimates

for t, and 012 in [1], for t, >0. Now consider the

null kypothesis that the ICC are the same in all
herds while allowing for heterogeneous pheno-
typic variances across herds, and let the com-
mon value of the ICC be ty. Then,

Lo(xijho,c]...ckk) =
-3 3 Ista - Diogll -

+ (s — Dlog(1 + (n — Dty
+ W/ ~ tp)
+ BJ(o}(l + (» — ty)

+ (sn — 1)iog(cd)]. )
The REML estimates for t, and 0'12 satisfy,
respectively,
k I:-s(n-—l) + ~1n-1)
>, L=t " T+ (- Dy
i
W, (@ — 1B
+ 3~ : =0
o -1 ol +@- 1y’
3]
and
W, B,
T o ara-p &~ ne; = 0.
41

There is no explicit solution for t; and O'iz,

and iterative techniques must be used to solve
[3] and [4] and to obtain the maximum likeli-
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hood estimate (MLE). Similar formulas can be
derived for the hypothesis that the phenotypic
variances are homogeneous while allowing the
ICC to differ between herds or for the hypoth-
esis that both the ICC and phenotypic vari-
ances are homogeneous (standard ANOVA
formulas).

The power of an LR test to detect heter-
ogeneity of ICC or phenotypic variances was
investigated by simulation. For each replicate,
the true f; were sampled from a truncated
normal distribution with mean ty (hence, t; was
approximately ~N(tp,v(t;))) in the interval
<0,1>. Repeatedly sampling of ICC and vari-
ances can be justified because the interest is in
inference about the whole population of herds,
and the power of detecting different variances
for a particular (arbitrary) set of herds would
be conditional on the parameters for those
herds. In essence, the calculated power is the
expectation of the power over the distribution
of ICC. For each of k herds, between- and
within-sire sum of squares were sampled from
the appropriate chi-square distribution, and the
sample between- and within-sire components
were estimated using REML. The sampling
procedure caused a slightly skewed distribu-
tion of t; because tg was .1. By sampling sum
of squares, data were assumed to be comected
for all fixed effects, including fixed herd ef-
fects.

Data were simulated for two different de-
signs: the first design with k = 25, s = 30, and
n = 10, and 2 second design with k = 10, s =
100, n = 10. For each of 5000 replicates, LR
tests were carried out comesponding to the

following null hypotheses (Ho): 1) Hy [02, to]
= both ICC and phenotypic variances are
homogeneous (df = 2(k — 1)); 2) H, [67, tj] =
ICC are homogeneous, allowing for heter-
ogeneous phenotypic variances (df = k — 1);
and 3} H, {0'(2,, t,] = phenotypic variances are
homogeneous, allowing for heterogeneous ICC
(df = k — 1). The alternative hypothesis in all
cases was heterogeneity of both 0'12 and t,. For
each replicate, the appropriate REML esti-
mates were calculated for each hypothesis us-
ing simple iterative techniques. Two different
sources are expected to cause biases in the LR

test: one source is that small samples cause
departures of the distribution of the test statis-
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tic from the chi-square distribution; the cther
source is that the estimates of the ICC are not
normally distributed.

To predict the power of the LR test, the
sampling variances of the parameter estimaies
are needed, but, using REML, the exact samip-
ling variances of the estimates are not known.
One suggestion is to use approximate sampling
variances pertaining to ANOVA estimates. As-
suming that §; is estimated from an ANOVA,
its sampling variance (5) is approximateiy

21+ (n— D (4 - 1) (sn - 1)

) =
V@) ss — Dn? @ - 1) I}

with E[;] = t;, and s and n, as before, the
number of sires and progeny per sire. For any
(fixed) set of parameterss, the asymptotic digtri-
bution of the LR is a noncentral chi-square if
the alternative hypothesis holds {11). For any
replicate, the variance among estimated
parameters, say ICC, had two components: one
that is due to variance in true ICC, and cne
that is due to sampling variance about the true
ICC. Therefore, a random effects mode! was
assumed for the prediction of the power of the
LR test. For a balanced one-way random ef-
fects model, the LR test is equivalent to an F
test (9) and, therefore, asymptotically (for large
within-group degrees of freedom) equivalent to
a scaled central chi-square with (k — 1} degress
of freedom, where k is the number of groups.
The scaling parameter depends on the ratio of
the between- and within-group variance.
Analogously, the variance of true parameters
{“between” variance) and the approximate
sampling variance of the estimated parameters
(“within” variance) were used in the prediction
of the power. The powers of tests 1 to 3 were
predicted using

Pla) = f f(x)dx, | |
[xa@d)e i6]

with f(x) being the density of a centrai 2
distribution with df degrees of freedom:; xi(df)

is the 100(1 — o) percentage point for a central

chi-square distribution.
The constant ¢ = [(v(B;18) + v(B))/v(H,10)]
for hypotheses 2 and 3, 0; = t; for hypothesis 2,
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and 6; = o; for hypothesis 3. For hypothesis 1,
¢1 = (¢ + c3)/2; ¢y and ¢4 are the constants for
hypotheses 2 and 3, respectively.

Balanced Cross-Classified Half-Sib Designs

If sires and herds (strata) are cross-
classified, i.e., all sires have progeny in all
herds, then the following questions arise. 1)
What is the contribution of the additional in-
formation, i.e., that animals in different herds
are related to one another, to the detection of
heterogeneity of parameters? 2) What is the
effect of assuming a hierarchical design when
maximizing the likelihood when data were
generated from a cross-classified design?

The implicit assurnption in the latter ques-
tion, that data from different herds were statis-
tically independent of each other, was made
for computational reasons by Swalve and Van
Vleck (20), Van Vleck and Dong (22), Van
Vieck et al. (23), and Visscher et al. (24)
because relationships between animals in dif-
ferent herds were ignored in those studies.
These questions were addressed again by using
simulation. The following model was used to
generate data consisting of mean square be-
tween sires within a stratum (MSB), mean
square within sires within a stratum (MSW),
and mean cross product for sires between strata
(MCPB):

yiit = oS; + Piet 7

where yy; is an observation on progeny 1 (1 =
1,n) of sire j (j = 1,s) in stratum i {i = 1,k) with
residual e;;, and o and B; are constants scaling
the sire and residual variance. Therefore, the
assumption is that additive genetic correlations
between sire performances in different strata
are unity and that a sire by herd interaction is
the effect of scaling. Then, if M is a k x k
matrix of MSB and MCPB between k strata,
and if W is the diagonal matrix of MSW,

EM] = B2 + n o?o? = o2, + no?,
E[Mjy] = n Giamo% = n GO,
EWj] = Bio), = o;.

for strata i and m. The likelihood function was
parameterized in terms of between- and within-
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sire components and was maximized condi-
tional on the MSW being the MLE of the
within-sire component for that stratum, i.e.,

l\dLE(o"zﬁ) = W,. This was done for computa-

tional reasons [see Appendix and (12)]. The
estimates of the variances were, therefore, only
approximations of MLE. Although the
parameterization in between- and within-sire
variances is different from the one used in the
previous section, the main interest is the power
of detecting heterogeneous between-sire com-
ponents, and this power is likely to be very
similar to the power of detecting heterogene-
ous ICC. To verify this, a nested (hierarchical)
design was simulated as in the previous sec-
tion, but with parameterization of the likeli-
hood function in between- and within-sire
components. The effect of fixing the estimates
of the within-sire components to the within
mean squares is unlikely to have a great effect
on the LR: even for the smallest design, the
degrees of freedom for the within-sire compo-
nents were as large as 270 (= 30 x (10 — 1)).
Data were generated as follows for each repli-

cate: for each herd, t; and 0'12 were sampled as
in the previous section, and the scaling

VISSCHER

parameters were calculated as o

1

(45Dt B = [(1 = GV ~190g] with
top = .1 and 6y = 1.0. Sire progeny means and
residuals were sampled from a normal distribu-
tion (using [7]), and MSW, MSB, and MCPB
were accumulated. Simulations were per-
formed for the same groups sizes as in the
previous section. The number of replicates was
5000 and 1000 for group sizes of k=10 and k
= 25, respectively.

RESULTS

Balanced Nested Haif-Sib Deslgns

Simulation results for small and medium .
group sizes for a balanced nested half-sib de-
sign are in Tables 1 and 2. The coefficients of
variation, rather than the variances of the pop-
ulation parameters, were displayed to make

comparisons between the powers for t, and Glz :

The design from Table 1 was chosen to give
similar standard errors of the heritability (b% =
4t) estimates, as were obtained by Visscher et
al. (24) using field data. For the parameters
used in Table 1, the approximate standard error

TABLE 1. Observed (O;) and predicted (P;) powers (pcrcanta%? ;gr likelihood ratio tests from a balanced half-sib design

for 25 herds, 30 sires per herd, and 10 progeny per sire.

vy’ S C Py 0, Py 03 P3

0 0 55 50 55 5.0 45 50
1 0 71 6.4 8.2 7.1 44 50
1 A 874 84.1 73 71 89.7 %08
2 0 13.9 1.8 16:6 157 45 50
2 2 100.0 100.0 148 15.7 100.0 100.0
a 0 30.1 249 17.0 356 43 50
3 3 100.0 100.0 384 35.6 100.0 100.0
r: 0 510 474 62.6 62.6 4.6 50
4 4 100.0 100.0 63.3 62.6 1000 100.0
5 0 70.6 74 80.3 84.1 49 5.0
5 5 100.0 100.0 82.6 84.1 100.0 100.0

1SE(C)I) 0 to .7%; SE(O7) 4 to 1.2%; SE(O3) .0 to .5%. Empirical standard errors were calculated from 5000

replicates.

2Sv.lbau:tipt.\: 1 10 3 for observed and predicted powers refer to different null hypotheses: 1 = both intraclass correlation
{ACC) and phenotypic variances homogeneous; 2 = ICC homogeneous, allowing for heterogeneous phenotypic variances;
3 = pherotypic variances homogeneous, allowing for heterogeneous ICC.

3Mean ICC and phenotypic variance in the population are .1 and 1.0, respectively.

4powers for o0 = 5%.
SCoefficient of variation of true individual herd ICC.
SCoefficient of variation of individual herd phenotypic

Joumal of Dairy Sctence Vol. 75, No. 5, 1992
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TABLE 2. Obscrved (0;) and predicted (P;) powers (percentage) for likelihood réﬁo tests from a balanced half-sib design
for 10 herds, 100 sires per herd, and 10 progeny per sire.h2:34

oy cve)’® 0y Py 03 Py O3 Py

] 0 4.8 5.0 5.5 50 52 50
1 0 84 82 10.2 100 53 50
A 1 952 96.9 10.3 100 96.3 96.3
2 0 253 227 29.7 311 50 5.0
2 2 100.0 100.0 30.9 311 100.0 100.0
3 0 555 515 63.1 62.4 4.8 5.0
3 3 100.0 100.0 64.4 62.4 100.0 100.0
4 0 789 79.1 842 84.1 4.6 5.0
4 4 100.0 100.0 82.6 84.1 100.0 100.0
5 ] 858 934 92.6 94.0 4.7 50
5 5 100.0 100.0 924 94.0 1000 100.0

ISE(0;) .0 to .6%; SE(Oy) .3 to .8%; SE(O3) .0 to
replicates,

4%. Empirical standard errors were calculated from 5000

2Subscripts 1 to 3 for observed and predicted powers refer to different null hypotheses: 1 = both intraclass
correlations (ICC} and phenotypic variances homogeneous; 2 = ICC homogeneous, allowing for heterogeneous
phenotypic variances; 3 = phenotypic variances homogencous, allowing for heterogencous ICC,

3Mean ICC and phenotypic variance in the population are .1 and 1.0, respectively.

4powers are for @ = 5%.

SCoefficient of variation of true individual herd ICC.

_GCoefﬁcient of variation of individual herd phenotypic variances.

of the comresponding heritability estimate was
.189 (from Equation [51). The probability of
rejecting the null hypothesis when it was true
was very similar to the significance level for
testing phenotypic variances and for testing
heterogeneity of ICC. For the double homo-
geneity test, the LR test detected heterogeneity
even when one of the parameters, in this case
the phenotypic variance, was homogenecus
(see columns pertaining to Oy in Tables I and
2). Clearly, the power to detect heterogeneous
ICC was very low compared with the power to
detect differences in phenotypic variances. For
example, if the CV(tp) in the population of
herds was .3, which corresponds to a distribu-
tion of the heritability with mean of .40 and
standard deviation of .12, then, in approxi-
mately 37% of repeated samples of 25 herd
estimates, a difference in heritability would be
detected. Table 2 appears to confirm that some
of the (small) differences between observed
and predicted powers in Table 1 were caused
by small sample sizes. Again, the difference in

power between LR tests for t; and 0'12 is strik-

ing. In general, simulation results agreed well
with their predictions.

In Table 3, the predictions of the powers for
large samples for two groups are shown. Such
samples may be similar to estimating
parameters from groups of herds that have
been split according to the herd mean or herd
variance. The standard error of the heritability
is shown because results from studies investi-
gating heterogeneity of variance in two or
more groups (4, 10, 13) usvally are reported in
terms of differences between heritability esti-
mates. Table 3 shows that, even for large
sample sizes, moderate powers can be obtained
using an LR test. For all sample sizes in Table
3, the predicted power of an LR test for detect-
ing heterogeneity of phenotypic variances was
100% when taking the same range of coeffi-
cient of variation for the phenotypic variance
as was used for the ICC.

Balanced Cross-Classifled Half-Sib Designs

Table 4 shows the results from simulating
data from a balanced cross-classified design.
Results are shown only for cases in which

CV(eD) = 0, ie, CV() = CV(oy/o)) =
Cv (O%i). Hence, between- and within-sire vari-
ances were heterogencous, but their sum, the

Journal of Dairy Science Vol. 75, No. 5, 1992
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TABLE 3, Predicted powers (for @ = 5%) for detection of
heterogeneous intraclass correlations (ICC) in two groups
for likelihood ratio tests from various balanced half-sib
designs, assuming that phenotypic variances are
homogeneous.

Power
s o SERY 7 2 3
(%)

100 25 {071 17 59 88
50 061 22 72 94
100 .056 26 78 56
250 25 045 40 9 99
50 039 52 96 100
100 035 59 97 100
500 25 032 69 99 100
50 027 80 99 100
100 .025 86 100 100
750 25 026 84 100 100
50 022 o1 100 100
100 020 94 100 100
1000 25 022 91 100 100
50 019 96 100 100

ic0  .018

IMean 1CC across the two groups is .1.
Number of sires per group.
INumber of progeny per sire.
4Using 2 = 4% and Equation [S]
21+ (- L) @ -4)? (n - 1)

v(t\l) N s(s — 1)112 n-1)

SCV{t) = Coeficient of variation of true ICC between
the two groups.

phenotypic variance, was the same for all
herds. The first columns for each of the two
population designs, i.e., columns Qg can be
directly compared with columns O, from Ta-
bles 1 and 2. Clearly, the powers for detecting
heterogeneous sire components and ICC are
similar. The second column of observed pow-
ers in Table 4 shows the effect of assuming the
incorrect model for calculating the LR, The
loss in power occurs because part of the infor-
mation about the covariance structure of the
MSB is not taken into account in the calcula-
tion of the maximum likelihood. Note that the
estimates of the between- and within-sire com-
ponents both for the unrestricted model (differ-
ent between- and within-sire components for
each stratum) and for the Hy hypothesis are
unbiased (conditional on the ANOVA esti-
mates for the between-sire variance being posi-
tive), because the expectations of the mean

Journal of Dairy Science Vol. 75, No. 5, 1962

squares in the usual ANOVA are not changed;
ignoring the MCPB simply means that the
variance of the estimates is increased. The
estimated Type 1 errors for both designs were
less than 1% if an incorrect model was as-
sumed, at a nominal significance level of 5%.
If the null hypothesis was false, the probability
of rejecting it, ie., power, was also low (see
columns Os).

The final column in Table 4 indicates the
gain of using MCPB for the assumed model to
detect heterogeneous variance components.
The power was increased substantially, in par-
ticular for the range of CV(t;) of .2 to .3. In
absolute terms, the power was still small for
design 1 (25 strata, 30 sires, 10 progeny per
sire): if the coefficient of variation of the -
between-sire variance was .30 in the popula-
tion, this heterogeneity would be picked up in
approximately 62% of samples. For CV(t) =
.1, the power for the nested design (8.2%) was
found to be larger than the power for the cross- -
classified design (7.7%) for the design with 25
herds, althongh a larger power was expected
for the cross-classified design. This may be
explained by sampling (standard emors of
mean powers were .3 and .5, respectively) and
by departures from normality for small sample
estimates. The estimated Type 1 error for the
nested design (column O4) was 6.6%, at a
nominal significance level of 5%, whereas the
estimated Type 1 error for the cross-classified
design was 5.3%.

DISCUSSION

The analytical and simulation results show
clearly that the power of an LR test for detect-
ing heterogeneous ICC (or heritabilities) is
very low for the range of standard errors of
heritability estimates to be expected from indi-
vidual herd data in most countries. Visscher et
al. (24) used 6 yr of first lactation data from 26
large pedigree herds in England and Wales and
obtained standard errors of heritability esti-
mates of approximately .19. Van Vleck and
Dong (22), using 300 to 400 first lactation
records per herd, estimated the standard errors
of their heritability estimates to be approxi-
mately .15. The United Kingdom has the
largest average herd size in Europe, so samp-
ling variances of individual herd estimates
would be larger in other countries in Europe.
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TABLE 4. Observed (0;) powers and standard errors (percentage), for & = 5%, in detecting heterogeneous sire variances
for likelihood ratio (LR) tests from balanced nested and cross-classified half-sib designs when phenotypic variances are

homogeneous.

Design 1, & = 25, s* = 30, o° = 10

Design 2, k2 = 10, s* = 100, ° = 10

cv(ep® 0, 05 0, 0, O, O
SE SE SE SE SE SE
0 66 3 4 2 53 3 57 5 9 1 51 03
1 82 3 3 2 1 5 100 5 25 3 141 3
2 165 6 21 6 286 11 294 9 159 4 499 6
3 356 9 122 9 616 15 585 7 495 5 828 7
4 586 4 322 18 865 1.1 308 4 740 7 947 2
5 765 6 578 20 964 6 913 4 880 7 985 2

1All LR are conditional on D = W.

2Subscripts for observed powers 4 1o 6 refer to the following data structures and muil hypotheses Hy: 4 = data from
nested design, Hg = homogeneous sire variances; 5 = data from cross-classified design, but ignoring mean cross product
for sires between strata, Hy = homogeneous sire variances; 6 = data from cross-classified design, Ho = homogeneous sire

variances.
3Number of herds.
4Number of sites per herd.
SNumber of progeny per sire.

6Coefficient of variation for site variance across herds.
- TEmpirical standard errors were calculated from 1000 replicates (design 1) and 5000 replicates (design 2).

Using more records per herd seems obvious
but may give additional problems of heter-
ogencity of variance between herd-years and
between lactations, if the use of later lactations
is considered.

Therefore, the conchision of Visscher et al.
(24), that heritability estimates were fairly
homogeneous and that phenotypic variances
differed between herds, is not surprising given
the low power of the statistical test. However,
before using an IAM-BLUP evaluation, a deci-
sion should be made with regards to the cor-
rect covariance structure of the data. Given the
lack of power in detecting any differences in
heritabilities between herds, it seems logical to
assume that heritabilities are homogeneous.
Records can then be scaled according to a
(regressed) estimate of the within-berd pheno-
typic variances if those variances are found to
be heterogeneous. A Bayesian interpretation
for assuming homogeneous heritability for
practical purposes is that the individual herd
estimates shounld be regressed to an overall
heritability estimate (a prior for the mean of
the distribution of the heritability), and, be-
cause the sampling variances of the individual
estimates are large, the regressed estimates
would be very similar (homogeneous).

Shaw {17) used stimulation to investigate
powers to detect differences in additive genetic
(co)variances between two populations. Using
a balanced hierarchical design of dams within
sires and an LR significance test, Shaw (17)
found low powers to detect differences be-
tween the two populations. For example, when
the additive genetic variance in the populations
differed by a factor of 2.5, the power was
approximately 50% for a design of 100 sires, 3
dams per sire, and 3 progeny per dam for each
population.

Foulley et al. (6) presented a general frame-
work to test for sources (e.g., herds or sires)
causing heterogeneity of residual variance and
presented an example to illustrate the general-
ity of their test. However, the test failed to
detect heterogeneity of residual variance
caused by sires, and it may be argued that the
power of the presented hypothesis test, essen-
tially an LR test, for detecting heterogeneity of
sire variances (whether caused by herds or
sires) is likely to be low in most practical
situations. San Cristobal et al. (16) questioned
the robustness of their or any LR test to depar-
tures from normality, but results from the half-
sib designs seem to suggest that, for relatively
small samples, the lack of statistical power is

Joumnal of Dairy Science Vol. 75, No. 5, 1992




1328

of greater practical importance than violations
of normality assumptions.

The power for large samples approaches
unity rapidly (Table 3), although differences in
t (heritability) may not be detected for two
herd-groups with 100 to 200 sires represented.
For example, Hill et al. (10) estimated
parameters in two (high and low) groups, each
with 762 sires and approximately 11 effective
daughters per sire. Using the prediction for-
mula [6], with t = .0625 (h? = .25) and o =
5%, repeated samples of 2 herd groups from
the total population would give a power of 13,
32,47, 58, and 65% for CV(2) = .1, .2, ..., .5,
respectively. These relatively low powers are
confirmed by performing a simple significance
test on the difference of the estimates in the
high and low group, assuming that heritability
estimates are normally distributed. Although
the sign of the difference is consistent (high
mean and high variance groups showed higher
heritabilities), the test statistic is not significant
at the 5% level.

Using information between herds or strata
may increase the power of the LR test, but
simplified models are necessary, for computa-
tional reasons, to make calculation of likeli-
hoods under various hypotheses feasible. I,
for example, in the cross-classified design, the
assumption about scaling was not made, the
number of between-sire parameters to be esti-
mated would increase from k to k (k + 1)/2.

CONCLUSION

The power of detecting heterogeneocus heri-
tabilities or (additive) genetic variances be-
tween herds using field data is expected to be
small, but it-is relatively easy to detect differ-
ences in total phenotypic variances.
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APPENDIX

Estimation of Varlances In Balanced Cross-Classified Hall-Sib Designs
The following algorithm was suggested by R. Thompson.

Assume that a matrix M of MSB and MCPB and a diagonal matrix W of MSW are observed
from k herds. Each of the s sires has n progeny in each herd. For herd i, the between- and within-

sire variances are o%i and ci,i, respectively. For the “full” model, it is further assumed that
EM] =V = LL + D, [A1]

where L is a vector of length k with elements L; = n oy, and D is a diagonal matrix of order k
with D; = &2,

Then the residual likelihood is

2L,M, WIV) = (s — DlloglV! + tMV-1)] + s@ — DllogDi + (WD) [A2)]

Conditional on D = W, and ignoring the second part of the likelihood pertaining to D, the
maximum likelihood can be written as

k k
—OML,(MIV, D = W) = (s — Dflog(®;) + 3, 6 + Y, log(W)]
=2 j=t [A3]

1 1 1 1
where ; are the eigenvalues of M* =D 2M D 2=W M W 2 and 6, is the largest eigenvalue
of M*, .

Hence, conditional on D = W, no iterative procedure is required to calculate the maximum
likelihood for the full model. Unless the number of herds is very large, calculating the
eigenvalues for a symmetric k x k matrix is computationally relatively easy. The algorithm is
similar to a commonly used algorithm in factor analysis; the analogy is to regard sires as the only
“factor” in the analysis explaining the data [see e.g., (11)].

Computation of the maximum likelihood for the alternative hypothesis, that all sire variances
are the same, again assuming D = W, involves computing the MLE of the overall sire variance.
Let the overall sire variance be czbo. Tt can be shown that for this model the MLE of 0’%0 has an

explicit solution, which is
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ML(&2y) = [A'D7'MD -1 - 'D-D)Yn(1I’'D-11)?)

where 1’ is a row vector of length k with all elements unity.,

If data from different herds are assumed to be independent, computations of the maximum
likelihood requires solving a cubic equation in 0’%0 The MLE of the common sire variance then

satisfies, conditional on D = W,

}E 102, + ne?y) = zk:Mi/(ci,i + no22

This is relatively straightforward to solve.
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