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Heterogeneity of variance and dairy cattle breeding
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Abstract

The effects of heterogeneity among herds in phenotypic variance (0%) and in heritability (h?) on the accuracy of
evaluation of dairy sires and cows are discussed with reference to estimates from field data. It is argued that
heterogeneity of o®p can be accounted for by using a (Bayesian) regression procedure. While the same procedure
could be used to correct for heterogeneity of b2, in most practical situations the sampling errors of the hZ estimates
for individual herds are likely to be so large that regressed estimates of b2 will differ little from each other, so

constant values can be assumed.
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Introduction

In dairy cattle breeding, best linear unbiased
prediction (BLUP; Henderson, 1973} is the standard
way of predicting breeding values for sires, and is
becoming so for jointly evaluating sires and cows
using an animal model (Wiggans, Misztal and Van
Vleck, 1988; Ducrocq, Boichard, Bonaiti, Barbat and
Briend, 1990; Jones and Goddard, 1990). For the
properties of BLUP to hold, particularly in a
population undergoing selection, the exact variances
and covariances of all the observations should be
known and should be used in the genetic evaluation.
Fitting an incorrect model or covariance structure
may reduce accuracy and therefore response to
selection. For computational reasons, and for lack of
accurate parameter estimates, models are usually
fitted with as few parameters as possible. For
example, national animal model (AM) evaluations in
the USA, Australia and France use a single trait
repeatability model to describe the data, and fit a
‘management group’ as the main fixed effect.

One assumption often made for BLUP genetic
evaluation is that variances are homogeneous across
levels of fixed and random effects. There is, however,
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abundant evidence of heterogeneity of variance
across environments, in particular across herds (see.
for example, Hill, Edwards, Ahmed and Thompsen,
1983; Lofgren, Vinson, Pearson, and Powell, 1985;
Mirande and Van Vleck, 1985; Brotherstone and Hill,
1986; Boldman and Freeman, 1990; Dong and Mao,
1990; Short, Blake, Quaas and Van Vieck, 1990).
Failure fo take account of this heterogeneity of
variance may lead to inaccurate and biased
predictions of breeding values, although the
potential loss in response due to heterogeneity
induced prediction error (HIPE) depends on the true
(unknown) covariance structure of the data.

The aim of this study was to review some of the
theory and results from parameter estimation
concerning heterogeneity of variance in dairy cattle,
and {o present some new material, including a
derivation of loss in response to sire selection and an
investigation info a practical way suggested
previously for dealing with heterogeneous
(phenotypic) variances. Most of the discussion is on
heterogeneity of variance across herds.

Theory
Definitions
Let Y; be a record on the jth animal in the ith herd,
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where: IFX are defined environmental effects
(including herd effects); A; = breeding value; E; =
environmental deviation. These have variances:
viAy = i v(Ey) = O v(A; + Ep = 64 + OF = O
and are uncorrelated, and the heritability or
regression of breeding value on phenotype in herd 1
is

2_ - 2
h; = Baijpy = i/ Opy-

Prediction of breeding values for comparisons within
a herd using only data from that herd depends solely
on its parameters. For example, the within herd
prediction for mass selection is

AI} = h% (Yi} - Y()

In any national programme, predictions have to be
made across herds, so we define A} = the breeding
value in a ‘national herd’, which can be predicted
from data in one herd using A

For overall evaluation using BLUP, the relationships
between animals, the fixed effects structure and the
variances of the Y; and covariances with Ax are
required over all herds. Several assumptions can be
made about heterogeneity of variances across herds.
Some are listed in Table 1, most of which were also
given by Garrick and Van Vleck (1987). For example,
for scenario 1 it is assumed that both additive genetic
and environmental variances are homogeneous, and

Table1 Assumptionsabout heterogeneity of parameters for records
nested within herdst

Scenario v(Ay  v(E) K pt
1. Homogeneity o} of B
2. Homogeneity after scale

transformation§ cif(uy oFfu) B 1
3. Heterogenous variances,

homogeneous 2 o3 ok o1
4. Heterogeneous

environmental variances

and A% o3 o¥; B

5. Homogeneous genetic
variances after scale
transformation, heterogeneous
environmental variances

and 42§ oK) oF o1
6. Heterogeneity O4i oF; B 1
7+, Various, with genotype X

environment interaction <1

t For symbols, see text.

t Genetic correlation between performance in herd and
nationally.

§ f(u) is an arbitrary function of the mean JL.

for scenario 2 that the within herd genetic and
environmental variances are the same functions of
the herd mean, so that Theritabilities are
homogeneous across herds. The scenario involving
most parameters, but stil assuming a genetic
correlation of unity between breeding values across
herds, is 6, for which it is assumed that variances and
heritabilities are heterogeneous across herds.
Scenario 7+ here includes any with non-unit genetic
correlations across herds.

Accuracy of selection

If heterogeneity of variance is not taken into account,
an incorrect model is fitted to the data; but the
practical question in genetic evaluation is whether
there is a sufficient loss of accuracy of selection to
matter.

Mass selection. Results shown here are based on
fobscure) derivations of Hill (1984). Given a set of
k groups each of size n, an expression for the
accuracy, t, in the standard environment of
phenotypic selection on deviations from group
mean P;, is:

r={3¥IPy - P, AWASE By - P32 ATHA.

Taking the expectation over animals within groups
(E),
)

E(r) = XE{ZIP; - P, A%t/
[;E{;L?(P,-j -P) b E{JZ A% 1%
= 3 [cov(P;— P;, A1/ [STv(Py~ Pl S AT
= (1-1/m" 3 cov(d, AN/ IZ(03) TN,

which becomes, assuming a genetic correlation of
unity between performances across groups and the
same variance o5F for all groups,

E(r)=(1-1/m" S0,/ T op)'2

Now taking expectations across groups, which may
be a fixed or a random set,

E(r) = (1-1/m) "2 E(o,)/ [E(oB)]
(1= 1/m" (y + covl, 63}/ G/ 11 + CVAop] 2
=mpl1+py, 6 CVICV(ERL/IL + CVAep2 (1)
with 7, = (1 - 1/m' hy, if variances are
homogeneous. CV is the coefficient of variation, cp
= E(op), by = E(h) and py,, is the correlation between

h; and 6. Formula (1) corresponds to formula (2) of
Hill (1984).
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In Table 2 predicted reductions or increases in
accuracies are presented for different values of p,
CVh) and CV(cpy), using (1). Van Vieck (1987) and
Vinson (1987) give examples of losses in response to
selection using the results from Hill (1984).

A somewhat surprising result from (1) is that if
Pr, oy CV() > CV(op), Le. heritabilities and phenotypic
variances are positively correlated and dispersion of
heritabilities is large relative to that of phenotypic
variances, the expected accuracy is larger than under
homogeneity of variances. The change in accuracy is
small, however, unless CV{cp) is very large.

Finally, accuracy of mass selection can be calculated
when heterogeneity of variance is taken into account
for prediction of breeding values. For group i, the
regression of A* on Py is hG4a/0py so that the
accuracy of selection becomes,

r=(1-1/n2[EGDI's
and its expectation over all groups,
E(r) = 1y (1 + YCV2(i).

Therefore, if all the variances are known so that
correct weights can be given to records in different
groups, accuracy is somewhat higher if heritabilities
Vary among groups.

Sire selection. Suppose each sire has n progeny in each
of k herds, and that herds differ in intra-class
correlation (ICC), #. Using simple selection index

Table 2 Accuracy of mass selection with heterogeneity of variance
relative to the accuracy with homogeneity of variance as a function
of the coefficient of variation of phenotypic standard deviation
(CViop)) and of root heritability (CV (h)) and the correlation
between them (p,, Up)

CV(s))
01 02 03 0-4 05
Phop Cvil Relative accuracy X 100
—0-5 01 990 971 943 910 872

02 885 961 029 891 850
03 98.0 951 915 873 827
0-4 97-5 941 90-0 854 805
05 970 932 886 836 783
0-0 any 995 981 5.8 92.8 894

G5 01 1000 990 972 947 917
¢2 1005 1000 987 966 939
03 1010 1010 1001 984 962
04 1015 1020 1015 1003 984
05 1020 1030 1030 1021 1006

theory assuming the ¢; (usually taken to be h2/4 and
Op; are known without error so optimal weights are
used, it can be shown that the squared accuracy of
selecting sires (repeatability) is,

r? = nk/{nk + k/)ij f./(1 -]} 2)
= nk/{nk + HQ}.)},
where H(A)) is the harmonic mean of A; = (1 - £)/¢.

Letting Ay = (1 ~ t)}/t, the expectation of 2 is
approximately E (r2) = nk/[nk + 2 - (1 - 1/
KOV /(1 = 1],

If all £ = t; (2) reduces o the well known
repeatability of a predicted breeding value from a
progeny test with nk daughters, 7> = nk/(nk + Ag).
Formula (2) indicates that dispersion of A;leads to an
increase in accuracy, since the harmonic mean is less
than the arithmetic mean if the ¢; vary. This result is
analogous to the simple case of response to mass
selection using data on repeat records of an
individual; if they are uncorrelated response is
proportional to (B + h3$7”, so dispersion of
heritabilities gives a higher response to selection than
equal heritabilities with the same mean.

If heterogeneity of variances is ignored, and all
weights given to progeny means in different herds
are assumed to be equal to (1 — £;)/#22 (see Hill et al.,
1983, for the appropriate weights given to progeny
means in different groups), then the squared
accuracy, 1%, of selection with balanced data is:

17 =nk/{nk + HZ(1 - )/IE P22, )

The expectation of s} is, approximately, using
Taylor's expansion

Elrfl = nk/Ink + Lo/ {1 = % CV2 (D},

Hence, as anticipated, the accuracy is reduced if the £;
differ but are assumed to be homogeneous. The
expected reduction in accuracy is very small,
however. If this analysis is extended to incorporate
variation among herds in op;, yet equal weights are
applied, there is a further loss in accuracy which is a
function of CV(opy) and of the correlation between t;
and ©p; over herds; but the loss in accuracy remains
small if many herds are involved.

BLLIP

For most genetic evaluations in practice using BLUP
with a sire model or an animal mode], designs are
unbalanced. With an animal model, different types of
relatives contribute to the prediction of breeding
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values so it is not obvious how to predict losses in
accuracy if heterogeneity of variance is ignored.

Garrick and Van Vleck (1987) investigated losses in
response due to heterogeneous variances between
three environments corresponding to herd mean
production groups by deterministic simulation using
two sets of parameters. Responses were compared to
the response using a multitrait model which was
assumed to be the correct (true) model. For one
parameter set phenotypic variances and heritabilities
increased from the low to the high mean production
group, and ignoring heterogeneity of variance led to
a negligible reduction in asymptotic rate of response
to selection. For a second parameter set, genetic {sire)
variances were constant across environments and
residual variances decreased with increased herd
mean production levels, so that heritabilities
decreased with increased phenotypic variances. This
led to a reduction in the rate of respemse of
approximately 3% when heterogeneous variances
were ignored in the genetic evaluation. Garrick and
Van Vleck thus concluded that, in practice, progeny
testing schemes were robust to viclations of
assumptions regarding homogeneity of variances
between environments.

Meuwissen and Van der Werf (1992) simulated data
for a dairy population undergoing selection and
investigated losses in response to selection when
heterogeneous variances between herds were
ignored in the genetic evaluation. Data were
simulated either with or without heterogeneous
variances and heritabilities were constant across
herds. Breeding values were predicted using an
animal model and responmse to selection was
computed assuming there was homogeneity of
variance, For both progeny testing and open nucleus
schemes there were no significant losses in response
when variances were heterogeneous rather than
homogeneous. If a herd year effect was fitted in the
model but not included in the simulation, there was
a slight increase in the response to selection with the
open nucleus scheme for the case of simulated
heterogeneous variances; but it is not clear why this
occurred. The number of potential bull dams was
very large in their simulation, so reducing their
number by selecting from a limited group of (high
variance} herds may reduce intensity of selection
only slightly. Furthermore, in the simulation of
Meuwissen and Van der Werf (1992), (multiple)
female progeny from elite matings had records in the
same herd as their dams. Therefore after a few
generations of selection the high variance herds are
also the herds with the highest genetic mean, so that
selection within this group of herds does not
necessarily lead to a great loss in asymptotic rate of
respunse to selection.

Field data analyses

Many results of analyses of heterogeneity of variance
from field data have been reported using different
populations of dairy cattle, different methods of
variance component estimation, and different
assumptions about heterogeneity of variance
between herds (see Table 1). We refer only to results
from analyses on Holstein-Friesian populations in
the last decade. Unless stated otherwise, parameters
were estimated using residual maximum likelihood
(REML; Patterson and Thompson, 1971}

Grouping herds

Several studies have been reported in which herds
were grouped according to their mean production or
an estimate of their phenotypic variance, and
parameters were estimated within and between
groups. If herds are grouped according to their mean
production this implies an assumption of scenarios 2
and 5 from Table 1. Results from those studies were
discussed in a previous paper (Visscher, Thompson
and Hill, 1991).

There have been relatively few analyses quantifying
the genetic correlation of animal performances across
herd groups (assuming scenario 7+). Hill ef al. (1983)
estimated genetic correlations of sire performances
for milk production traits in herd groups split
according to mean, phenotypic variance, or
coefficient of variation (CV), using anova fype
estimation methods. For all criteria of grouping
herds and for all traits, genetic correlations did not
differ significantly from unity. Dong and Mao (1990}
estimated genetic correlations between sire
performances in three herd groups (low, medium,
high) split according to mean herd milk production
{evel or herd standard deviation, for three separate
4-year time periods. All estimates were larger than
095, and for the most recent time period (1984 to
1987) estimates of genetic correlations across herd
groups were essentially unity. Estimates of genetic
correlations for milk yield, fat yield and fat content
between pairs of states in the USA were reported by
Carabafio, Wade and Van Vieck {(1990). The lowest
correlation was 0-93 (for fat yield between California
and Wisconsin), and estimates for fat confent
exceeded 098. Although the average genetic
correlation of performance between any two herds in
the population was not investigated because herds
were ‘selected’, it seems reasonable for practical
purposes to assume that such a correlation is unity,
thereby elimating scenario 7+ of Table 1.

Meyer (1987) estimated a sire X herd variance of
approximately 0-03 of the total phenotypic variance,
but no distinction could be made between a real
genotype X environment interaction and an effect
due to common treatment of half-sibs within herds.
Garrick and Van Vleck (1987) found no reduction in




Heterogeneity of variance 325

response to selection when wusing ‘correct’
{simulated) sire and residual variances across three
environments but assuming a genetic correlation of
unity of performances across these environments,
although simulated genetic correlations ranged from
0-86 to 0-97.

Using individual herd data

To investigate scenarios 2 to 6, genetic and
environmental parameters should be estimated for
individual herds, but few analyses have been
reported which quantify heterogeneity of variances
between herds in dairy cattle.

Brotherstone and Hill (1986) estimated variances and
coefficients of variation (CV) of individual herd
phenotypic standard deviations for milk, fat and
protein yield in Holstein-Triesians. Variances of the
parameter of interest (8, for example Gp) were
estimated using:

variance between 6;
= empirical variance between 8;
- average sampling variance of & (4).

The estimated CV of herd op; ranged from 0-155 to
0-172 for milk, fat and protein yield, for both first and
later lactation records.

Van Vleck and Dong (1988) and Visscher et al. (1991)
used REML with an animal model to estimate
genetic and environmental variances for individual
herds. From a likelihood ratio (LR) test, Visscher ¢f al.
(1991) concluded that, although individual herd
heritabilities were not significantly different from
each other, herd phenotypic variances were highly
significantly different. t was subsequently shown,
however, that the statistical power of such a
significance test to detect differences in heritabilities
between herds can be very low because the standard
errors of the heritability estimates are large relative
to those of phenotypic variance (Visscher, 1992).
Standard errors of  Theritability estimates for
individual herds in these studies were approximately
(+15 (Van Vleck and Dong, 1988} and 0-19 (Visscher ef
al., 1991).

An alternative way to estimate v(8;), the variance of
the parameter of interest in the population of herds,
15 to use the LR statistic from comparing the
maximum likelihood from estimating a single
heritability estimate using all data (ML), with the
sum of the maximum likelihoods from estimating
individual herd heritabilifies (EML). If L; is the
likelihood function for parameter 8 from herd i, and
this function is assumed to be quadratic in 8, then

Lj = ai + Cj (9r - éi)zi

where a; and ¢; are constants and @,- is the maximum
likelihood estimate of 6;and,

2EML; - MLy) = - £ 2¢,8; — 8,2, with 8, = ML(6,).
Taking
@,- =0;+¢; @0 = By + gy vig) = V(@,— 18,

the expectation of (twice) the difference between the
two maximum likelihoods is, approximately,

E{2[EML; - MLyl}
= E{Z[(g; - Sg)Z/V(Ej)I + 20, - 90)2/V(8i)]]
=4+ vIBHZ 1/v{g)], (5

where d = degrees of freedom (= k - 1). Letting ¢ =
2(EML; - MLy}, an estimate of v(8)} is therefore

v(O) = —d)/[51/v(e)] (6).

The empirical variance among the 26 heritability
estimates obtained by Visscher ef al. (1991) and their
average sampling variance were found to be 0-035
and 0-039 respectively, giving a difference (equation
4}, which was negative. These values confirm the
ocutcome of a mare elaborate likelihood ratio test in
which heritability estimates were found not to differ
significantly (Visscher ef al., 1991).

Equation (6) was checked for robustness against
violations of assumptions using Monte Carlo
simulation for a nested balanced half-sib design of
sires within herds (for details see Visscher, 1992).
Equation (6) was found to be reasonably accurate in
estimating the variance of the parameters. For
example, for a design of 10 herds, 100 sires per herd
and 10 progeny per sire, the standard deviation of
heritabilities between herds was simulated to be
0-010, and estimated (using equation 6) as 0-009.
Similarly, for a design of 25 herds, 25 sires nested
within herds, and 20 progeny per sire, the standard
deviation and its estimate were 0-030 and 0-024,
respectively. The downward bias in both cases seems
to come from using the estimate of the heritability in
each herd to approximate its aNova sampling
variance: when the mean of the true heritabilities
over all herds, or an estimate thereof, was used to
calculate sampling variances of heritability estimates
for individual herds, the estimates of the standard
deviafions for each design were 0-010 and 0-031
respectively. Using the likelthood ratio statistic of
Visscher et al. (1991), the standard deviation of
heritabilities was estimated using (6) and found to be
0-098, corresponding to a CV of (:25. The relatively
large difference between the estimates of the
variances using (4) and (6) may be due to the fact
that in heritability estimates from each herd are
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weighted equally in (4), whereas they are weighted
according to their approximate sampling variances in

(&)

Scale transformations

If scenarios 2 and 5 from Table 1 apply, a scale
transformation will remove some or all of the
heterogeneity of variance. For scenario 2, correcting
data from different herds for their within-herd
phenotypic standard deviation would also yield
homogeneous genetic variances across herds since
heritabilities are constant. Some practical aspects of
this kind of standardization, as proposed by Hill
(1984), are discussed in the next section. I the true
correlation between herd mean and herd standard
deviation is unity, a logarithmic transformation
would also remove heterogeneity of wvariance.
Published estimates of this correlation for milk yield
traits are, however, in the range 0-4 to (-5, departing
from 1.0 further than can be accounted for by
sampling (Mirande and Van Vleck, 1985; Boldman
and Freeman, 1990; Visscher et al, 1991), and
implying that a log transformation would reverse the
correlation to give a negative association between
herd mean and herd standard deviation. A
consequence of a log transformation would then be
that more animals {e.g. bull dams) would be selected
from the herds of low means. Whether this is
justified depends on the herijtabilities within these
herds. For example, genetic variances are assumed fo
be homogeneous after a scale transformation in
scenarioc 5, ~while phenotypic variances and
heritabilities remain heterogeneous. Such a scenario
was proposed by Garrick and Van Vleck (1987) and
Boldman and Freeman (1990). If heritabilities for
untransformed traits are higher in high mean groups,
as found in several studies (e.g. Hill et al., 1983;
Boldman and Freeman, 1990; Dong and Mao, 1990), a
log transformation would reduce the efficiency of
selection. As pointed out by others (Garrick and Van
Vlieck, 1987; Boldman and Freeman, 1990}, one
should therefore be careful in applying a log
transformation for genetic evaluation purposes in
dairy cattle.

Bayesian regression

To account for sampling errors of parameter
estimates, Hill {1984) and Brotherstone and Hill
{(1986) proposed that individual herd parameters be
regressed to an overall a priori estimate, a standard
Bayesian procedure in which the regression
coefficient depends on the sampling variances of
individual herd estimates and the variance of the
parameters, assumed to be known a priori. This
method has been used for cow index evaluation in
Britain (G. ]. T. Swanson, personal communication).
The regression may be written:

- estimated accuratel

@? = éo + ﬁf(éi - 60) 7

A . A .
where 8; is the parameter estimate and 8 its
regressed estimate for herd i, and 8, is the overall
(prior) estimate. The regression coefficient is [3; =
1/01 + v), with v, = v{8;16)/v(8} being the ratio of
the sampling variance to the variance of the
parameter, or less formally, the ratio of variance
‘within’ and ‘between’ parameters 8. Thus if 0 is
a from a large number of
observations, v(9;18) and y; are small, so the
weighted estimate 8fis close to 8; whereas if 8, has a
high sampling error, the weighted estimate is close to
the population value, 8.

Let us consider the effect of the regression as
proposed by Brotherstone and Hill (1986) if there are
true  differences between individual herd
heritabilities, but sampling variances are too large to
detect them. One suggestion is to assume a value for
the coefficient of variation of heritabilities among
individual herds and apply (7). Using the mean
estimate of the 26 heritability estimates as an
estimate of the population value (the ‘prior
estimate), i.e. of the mean of all frue individual herd
heritabilities, equation (7) was applied to the 26
heritability estimates from Visscher et al. (1991).
Results are presented in Table 3. For a CV among
(true) heritability wvalues of 0-10 the average
regression was 0:05, and the standard deviation of
the regressed heritabilities was 0-01. Hence, if the CV
is low, as suggested by the likelihood ratio test and
the approximate estimate using (4), it is unlikely to
be worthwhile taking individual herd heritability
estimates for many herds because the regressed
values are nearly homogeneous. Even for the
estimate of the CV of 025 (last row Table 3), the
standard deviation of regressed heritabilities using
data from large pedigree herds was only 0-05.
Smaller herds would give heritabilify estimates with
such large standard errors that the regressed values

Table 3 Regressions of individual herd heritability estimates to an
overall mean, assuming different coefficients of variation for the
unobserved heritabilitiest

cv 7 B 8*  5.d.(8%) Range(0™
005 1025 0013 0387 0003 0-379-0-392
010 256 0049 038 0011 0-356-0-406
015 114 0103 038 0023  0-325-0-425
0-20 64 0167 0382 0037  0292-0-449
0:25 40 0239 0381 0052  0260-0476

+ Using estimates fromVisscher et al. {1991): v and § are
varianceratio and regression, from (7); 8% is 2 after regression;
s.d. (6% and range/@*) ares.d.and range of regressed b2 v (8)
= (VXB,7, with 8, =8 = 0-388.
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would be very close to the overall mean {or prior
estimate).

The two methods to estimate v(8;) were applied to
the phenotypic variances for fat yield estimated by
Visscher et al. (1991}, and were found to give similar
results. Using equations (4) and (7), the estimate of
CV was 0248 (from a mean of 835 kg?), the standard
deviation of regressed variances was 189 kg2, and the
average regression coefficient was 0-86. Using
equation (6), the corresponding values were 0-228,
190kg? and 0-83. The sampling variances of
estimates of the phenotypic variances were
calculated from the sampling (co)variances of genetic
and environmental variances. Using further
approximations, equation (6) was applied to the
phenotypic standard deviations. The estimates of
their mean and CV were 286kg and 0.124
respectively, similar to estimates for fat yield
reported by Brotherstone and Hill (1986). After
regressing individual herd phenotypic standard
deviations (average B was 0-86), the s.d. of the
regressed values was 3-4kg. Comparing the
estimates of the CV for phenotypic variances and
heritabilities again shows that the finding from
Visscher ef al. (1991) of homogeneous heritabilities
and heterogeneous phenotypic variances can follow
solely from relatively high sampling variances, and
conveys little about true differences between
heritabilities.

Whether it is worthwhile to estimate phenotypic
variances for each herd in the population regularly
and apply formula (7) to regress the estimates to
some prior mean depends on the relative magnitude
of the true variance and the sampling variance of the
parameters. Consider a balanced design with 4
degrees of freedom to estimate the phenotypic
variance for each of k herds. Assuming normality,
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the sampling variance of an estimate of the
phenotypic variance is

v(B3) = 26%/d or v(B) = 262/d,
and, for use in (7),
B = 1/11 +262/dv(®)].
Hence, assuming E[62] ~ 62,
B=EIB]={CVeI/CVeDt +2/d]  (8)

Assuming 8, = (28)/k, the mean CV of regressed
estimates is, for large k,

E[CVES] = BICV(EY) + (2/d)] %2 ©)

For various values of 4 and CV (op2), the CV of the
regressed estimates are presented in Table 4, using
(8) and (9). Clearly, for small 4 and CV, heterogeneity
of variance could be ignored.

Gianola, Foulley, Fernando, Henderson and Weigel
(1992) give a formal empirical Bayesian method for
estimation of heterogeneous variance. Essentially,
they proposed that individual herd (genetic and
environmental) variances be estimated by

d6? + dyo,2 d
s — =02+ 62— a3,
d+d, d+d,

with d the degrees of freedom for the initial estimate
of the herd variance. The parameter d, was termed
‘degrees of believe’ of the average population value
by Gianola et al., and is inversely proportional to the
prior variance of varfances. This method has been
used to standardize individual herd phenotypic

Table 4 Coefficients of variation for regressed individual herd phenotypic variance estimates for a balunced designt

V()
01 0-2 03 04 a5
d B cve® B cvieh) B Vet F Cvem B Cver
10 0-05 0-02 017 0-08 0-31 17 0-44 0-27 0-56 0-37
20 0-09 003 029 11 0.47 0-21 0-62 0:31 071 042
30 013 004 0-38 012 (0-57 0-23 0-71 34 079 0-44
40 017 (-04 044 013 0-64 024 0-76 0-35 0-83 0-46
50 020 0-04 0-50 {12 069 0-25 0.80 0-36 0-86 046

t disd.f Bisthe average regression coefficient, from (8). CV(8) is CV of true phenotypic variances. CV(0%) is CV of regressed

estimates.
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variances for the Australian animal model evaluation
since 1984 (L. Jones, personal communication),
assuming d, = 20. Hence the value of d, can either be
estimated from data, for example using equation (4),
or just assumed. Equating the two regression
coefficients, B, and d/(d + dp), gives

dU = Z/CV 2(9), or CV(Q} = (Z/dn)ifz.

Discussion

All cases described have dealt with heterogeneity of
variance across levels of fixed effects, particularly
herds. In dairy cattle there is evidence, however, of
different heritabilities estimated from different kinds
of relatives (see Visscher and Thompson, 1992, and
references therein). Estimates of heritabilities from
paternal half-sibs are usually lower than from
daughter-dam regression or using an animal model
and a statistical model to deal with such
heterogeneity of (genetic) variance has been given
(Visscher and Thompson, 1992).

Theoretical results have been derived for mass
selection and sire selection using a progeny test. In
only the former case, i.e. for bull-dam selection, does
heterogeneity of variance substantially reduce
accuracies. There are other situations, however, in
which the heterogeneity can raise problems when
comparisons are made between animals tested in
different places.

Nucleus (MOET, multiple ovulation and embryo
transfer) herds are now being established in which
bulls are evaluated from records of their dam or sibs
in one MOET herd (Nicholas and Smith, 1983). Since
the (commercial ) aim of MOET herds is to produce
(sell) animals of high genetic merit for the overall
population, it is important that the estimated
breeding values of animals from these herds predict
the performance of progeny in the ‘national’ herd,
which requires that the genetic mean of the herd and
the variance about it are both well estimated. There
is a distinction between the dairy MOET herd, in
which bulls from it are likely to be compared directly
with, for example, progeny tested sires from the
national population, and the herds or flocks of pig
and poultry breeding companies from which an
overall product rather than individual animals
assessed relative to some national standard are
marketed.

It may be expected that the management in MOET
herds is such that the mean production level (and
therefore herd variance) and heritability are above
average. With no correction for herd phenotypic
variance for a natiomal genetic evaluation the

predicted breeding values of high MOET bulls
would therefore be likely to be too high whereas if
the correction were solely for phenotypic variance,
they would be likely to be too low.

In this study the criterion for assessing the efficiency
of selection was the correlation between predicted
and true breeding values. Another criterion is the
variance of predicted breeding values. If this
variance is too high for a group of animals, say bulls,
then the best bulls of that group are not as good as
suggested by their predicted breeding values. This is
particularly important if bulls are compared across
different schemes or groups, for example local and
foreign bulls, or progeny tested and MOET bulls.
Hence an incorrect variance of predicted breeding
values for one scheme means that too many or tco
few bulls are selected from that scheme, so that the
overall accuracy of selection is decreased.

It is concluded that, for practical purposes,
individual herd phenotypic variances should be
estimated and regressed, by a factor (see equation 7)
depending on the number of records per herd, to a
prior estimate. It seems unlikely, however, that
heritability estimates for individual herds will be
available for use in heterogeneity adjustment, and it
is therefore suggested that herd heritabilities are
assumed to be homogeneous. If, on average, herd
heritabilities are associated with their mean
production or their phenotypic variance, individual
herd heritabilities can be estimated using their mean
or phenotypic variance. A similar regression as
proposed before can be applied, taking into account
the magnitude of the correlation between heritability
and mean (or variance), and hence the sampling
error. The present adjustment for heterogeneity of
variance for the US genetic evaluation uses a
relationship between herd heritability and herd
phenotypic variance estimated from data before 1984
(Wiggans and VanRaden, 1991). Other schemes
could be adopted incorporating this information.
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